

DRAFT

DO NOT USE THIS UNTIL IT'S DONE!

This is a draft. Do not use this version. The presence of an Axx does not mean it's going to be in

the final or the ordering of the final version.

Current status

Taking comments on this draft, and preparing the graphic refresh in time for the official release

on OWASP's 20th Anniversary.

Lead Authors

Andrew van der Stock @vanderaj

Brian Glas @infosecdad

Neil Smithline [@]

Torsten Gigler []

Contributors

Orange Tsai, Author of A10-2021: Server Side Request Forgery

Jim Manico and Jakub Maćkowski - OWASP CheatSheets Coordination

How you can help

At this stage, we are asking for

Data scientists - please peer review our analysis

Web designers - we need to make a mobile friendly version

Translators - please review the English text to make sure it's translatable

ASVS, Testing Guide, and Code Review Guide leadership - please use our data and help us

link our documents and standards together

•

•

•

•

•

•

•

•

•

•

https://twitter/vanderaj
https://twitter/infosecdad

Log issues and pull requests

Please log any corrections or issues:

https://github.com/OWASP/Top10/issues•

https://github.com/OWASP/Top10/issues

Introduction

Welcome to the OWASP Top 10 - 2021

Welcome to the latest installment of the OWASP Top 10! The OWASP Top 10 2021 is all-new,

with a new graphic design and an available one-page infographic you can print or obtain from

our home page.

A huge thank you to everyone that contributed their time and data for this iteration. Without you,

this installment would not happen. THANK YOU!

What's changed in the Top 10 for 2021

There are three new categories, four categories with naming and scoping changes, and some

consolidation in the Top 10 for 2021.

A01:2021-Broken Access Control moves up from the fifth position; 94% of applications

were tested for some form of broken access control. The 34 CWEs mapped to Broken

Access Control had more occurrences in applications than any other category.

A02:2021-Cryptographic Failures shifts up one position to #2, previously known as

Sensitive Data Exposure, which was broad symptom rather than a root cause. The renewed

focus here is on failures related to cryptography which often leads to sensitive data exposure

or system compromise.

A03:2021-Injection slides down to the third position. 94% of the applications were tested

for some form of injection, and the 33 CWEs mapped into this category have the second

most occurrences in applications. Cross-site Scripting is now part of this category in this

edition.

A04:2021-Insecure Design is a new category for 2021, with a focus on risks related to

design flaws. If we genuinely want to "move left" as an industry, it calls for more use of threat

modeling, secure design patterns and principles, and reference architectures.

•

•

•

•

A05:2021-Security Misconfiguration moves up from #6 in the previous edition; 90% of

applications were tested for some form of misconfiguration. With more shifts into highly

configurable software, it's not surprising to see this category move up. The former category

for XML External Entities (XXE) is now part of this category.

A06:2021-Vulnerable and Outdated Components was previously titled Using Components

with Known Vulnerabilities and is #2 in the industry survey, but also had enough data to make

the Top 10 via data analysis. This category moves up from #9 in 2017 and is a known issue

that we struggle to test and assess risk. It is the only category not to have any CVEs mapped

to the included CWEs, so a default exploit and impact weights of 5.0 are factored into their

scores.

A07:2021-Identification and Authentication Failures was previously Broken Authentication

and is sliding down from the second position, and now includes CWEs that are more related

to identification failures. This category is still an integral part of the Top 10, but the increased

availability of standardized frameworks seems to be helping.

A08:2021-Software and Data Integrity Failures is a new category for 2021, focusing on

making assumptions related to software updates, critical data, and CI/CD pipelines without

verifying integrity. One of the highest weighted impacts from CVE/CVSS data mapped to the

10 CWEs in this category. Insecure Deserialization from 2017 is now a part of this larger

category.

A09:2021-Security Logging and Monitoring Failures was previously Insufficient Logging &

Monitoring and is added from the industry survey (#3), moving up from #10 previously. This

category is expanded to include more types of failures, is challenging to test for, and isn't

well represented in the CVE/CVSS data. However, failures in this category can directly impact

visibility, incident alerting, and forensics.

A10:2021-Server-Side Request Forgery is added from the industry survey (#1). The data

shows a relatively low incidence rate with above average testing coverage, along with above-

average ratings for Exploit and Impact potential. This category represents the scenario

where the industry professionals are telling us this is important, even though it's not

illustrated in the data at this time.

Methodology

This installment of the Top 10 is more data-driven than ever but not blindly data-driven. We

selected eight of the ten categories from contributed data and two categories from an industry

survey at a high level. We do this for a fundamental reason, looking at the contributed data is

looking into the past. AppSec researchers take time to find new vulnerabilities and new ways to

test for them. It takes time to integrate these tests into tools and processes. By the time we can

reliably test a weakness at scale, years have likely passed. To balance that view, we use an

industry survey to ask people on the front lines what they see as essential weaknesses that the

data may not show yet.

•

•

•

•

•

•

There are a few critical changes that we adopted to continue to mature the Top 10.

How the categories are structured

A few categories have changed from the previous installment of the OWASP Top Ten. Here is a

high-level summary of the category changes.

Previous data collection efforts were focused on a prescribed subset of approximately 30 CWEs

with a field asking for additional findings. We learned that organizations would primarily focus

on just those 30 CWEs and rarely add additional CWEs that they saw. In this iteration, we opened

it up and just asked for data, with no restriction on CWEs. We asked for the number of

applications tested for a given year (starting in 2017), and the number of applications with at

least one instance of a CWE found in testing. This format allows us to track how prevalent each

CWE is within the population of applications. We ignore frequency for our purposes; while it may

be necessary for other situations, it only hides the actual prevalence in the application population.

Whether an application has four instances of a CWE or 4,000 instances is not part of the

calculation for the Top 10. We went from approximately 30 CWEs to almost 400 CWEs to

analyze in the dataset. We plan to do additional data analysis as a supplement in the future. This

significant increase in the number of CWEs necessitates changes to how the categories are

structured.

We spent several months grouping and categorizing CWEs and could have continued for

additional months. We had to stop at some point. There are both root cause and symptom types

of CWEs, where root cause types are like "Cryptographic Failure" and "Misconfiguration"

contrasted to symptom types like "Sensitive Data Exposure" and "Denial of Service." We decided

to focus on the root cause whenever possible as it's more logical for providing identification and

remediation guidance. Focusing on the root cause over the symptom isn't a new concept; the

Top Ten has been a mix of symptom and root cause. CWEs are also a mix of symptom and root

cause; we are simply being more deliberate about it and calling it out. There is an average of 19.6

CWEs per category in this installment, with the lower bounds at 1 CWE for A10:2021-Server-Side

Request Forgery (SSRF) to 40 CWEs in A04:2021-Insecure Design. This updated category

structure offers additional training benefits as companies can focus on CWEs that make sense

for a language/framework.

How the data is used for selecting categories

In 2017, we selected categories by incidence rate to determine likelihood, then ranked them by

team discussion based on decades of experience for Exploitability, Detectability (also

likelihood), and Technical Impact. For 2021, we want to use data for Exploitability and Impact if

possible.

We downloaded OWASP Dependency Check and extracted the CVSS Exploit, and Impact scores

grouped by related CWEs. It took a fair bit of research and effort as all the CVEs have CVSSv2

scores, but there are flaws in CVSSv2 that CVSSv3 should address. After a certain point in time,

all CVEs are assigned a CVSSv3 score as well. Additionally, the scoring ranges and formulas

were updated between CVSSv2 and CVSSv3.

In CVSSv2, both Exploit and Impact could be up to 10.0, but the formula would knock them

down to 60% for Exploit and 40% for Impact. In CVSSv3, the theoretical max was limited to 6.0

for Exploit and 4.0 for Impact. With the weighting considered, the Impact scoring shifted higher,

almost a point and a half on average in CVSSv3, and exploitability moved nearly half a point

lower on average.

There are 125k records of a CVE mapped to a CWE in the NVD data extracted from OWASP

Dependency Check, and there are 241 unique CWEs mapped to a CVE. 62k CWE maps have a

CVSSv3 score, which is approximately half of the population in the data set.

For the Top Ten, we calculated average exploit and impact scores in the following manner. We

grouped all the CVEs with CVSS scores by CWE and weighted both exploit and impact scored by

the percentage of the population that had CVSSv3 + the remaining population of CVSSv2 scores

to get an overall average. We mapped these averages to the CWEs in the dataset to use as Exploit

and Impact scoring for the other half of the risk equation.

Why not just pure statistical data?

The results in the data are primarily limited to what we can test for in an automated fashion. Talk

to a seasoned AppSec professional, and they will tell you about stuff they find and trends they

see that aren't yet in the data. It takes time for people to develop testing methodologies for

certain vulnerability types and then more time for those tests to be automated and run against a

large population of applications. Everything we find is looking back in the past and might be

missing trends from the last year, which are not present in the data.

Therefore, we only pick eight of ten categories from the data because it's incomplete. The other

two categories are from the industry survey. It allows the practitioners on the front lines to vote

for what they see as the highest risks that might not be in the data (and may never be expressed

in data).

Why incidence rate instead of frequency?

There are three primary sources of data. We identify them as Human-assisted Tooling (HaT),

Tool-assisted Human (TaH), and raw Tooling.

Tooling and HaT are high-frequency finding generators. Tools will look for specific vulnerabilities

and tirelessly attempt to find every instance of that vulnerability and will generate high finding

counts for some vulnerability types. Look at Cross-Site Scripting, which is typically one of two

flavors: it's either a more minor, isolated mistake or a systemic issue. When it's a systemic issue,

the finding counts can be in the thousands for an application. This high frequency drowns out

most other vulnerabilities found in reports or data. TaH, on the other hand, will find a broader

range of vulnerability types but at a much lower frequency due to time constraints. When humans

test an application and see something like Cross-Site Scripting, they will typically find three or

four instances and stop. They can determine a systemic finding and write it up with a

recommendation to fix on an application-wide scale. There is no need (or time) to find every

instance.

Suppose we take these two distinct data sets and try to merge them on frequency. In that case,

the Tooling and HaT data will drown the more accurate (but broad) TaH data and is a good part

of why something like Cross-Site Scripting has been so highly ranked in many lists when the

impact is generally low to moderate. It's because of the sheer volume of findings. (Cross-Site

Scripting is also reasonably easy to test for, so there are many more tests for it as well). In 2017,

we introduced using incidence rate instead to take a fresh look at the data and cleanly merge

Tooling and HaT data with TaH data. The incidence rate asks what percentage of the application

population had at least one instance of a vulnerability type. We don't care if it was one-off or

systemic. That's irrelevant for our purposes; we just need to know how many applications had at

least one instance, which helps provide a clearer view of the testing is findings across multiple

testing types without drowning the data in high-frequency results.

What is your data collection and analysis process?

We formalized the OWASP Top 10 data collection process at the Open Security Summit in 2017.

OWASP Top 10 leaders and the community spent two days working out formalizing a

transparent data collection process. The 2021 edition is the second time we have used this

methodology. We publish a call for data through social media channels available to us, both

project and OWASP. On the OWASP Project page, we list the data elements and structure we are

looking for and how to submit them. In the GitHub project, we have example files that serve as

templates. We work with organizations as needed to help figure out the structure and mapping to

CWEs. We get data from organizations that are testing vendors by trade, bug bounty vendors,

and organizations that contribute internal testing data. Once we have the data, we load it together

and run a fundamental analysis of what CWEs map to risk categories. There is overlap between

some CWEs, and others are very closely related (ex. Cryptographic vulnerabilities). Any decisions

related to the raw data submitted are documented and published to be open and transparent with

how we normalized the data.

We look at the eight categories with the highest incidence rates for inclusion in the Top 10. We

also look at the industry survey results to see which ones may already be present in the data. The

top two votes that aren't already present in the data will be selected for the other two places in the

Top 10. Once all ten were selected, we applied generalized factors for exploitability and impact;

to help rank the Top 10 in order.

Data Factors

There are data factors that are listed for each of the Top 10 Categories, here is what they mean:

CWEs Mapped: The number of CWEs mapped to a category by the Top 10 team.

Incidence Rate: Incidence rate is the percentage of applications vulnerable to that CWE from

the population tested by that org for that year.

(Testing) Coverage: The percentage of applications tested by all organizations for a given

CWE.

Weighted Exploit: The Exploit sub-score from CVSSv2 and CVSSv3 scores assigned to

CVEs mapped to CWEs, normalized, and placed on a 10pt scale.

Weighted Impact: The Impact sub-score from CVSSv2 and CVSSv3 scores assigned to

CVEs mapped to CWEs, normalized, and placed on a 10pt scale.

Total Occurrences: Total number of applications found to have the CWEs mapped to a

category.

Total CVEs: Total number of CVEs in the NVD DB that were mapped to the CWEs mapped to

a category.

Category Relationships from 2017

There has been a lot of talk about the overlap between the Top Ten risks. By the definition of each

(list of CWEs included), there really isn't any overlap. However, conceptually, there can be overlap

or interactions based on the higher-level naming. Venn diagrams are many times used to show

overlap like this.

The Venn diagram above represents the interactions between the Top Ten 2017 risk categories.

While doing so, a couple of essential points became obvious:

One could argue that Cross-Site Scripting ultimately belongs within Injection as it's essentially

Content Injection. Looking at the 2021 data, it became even more evident that XSS needed

to move into Injection.

The overlap is only in one direction. We will often classify a vulnerability by the end

manifestation or "symptom," not the (potentially deep) root cause. For instance, "Sensitive

Data Exposure" may have been the result of a "Security Misconfiguration"; however, you won't

see it in the other direction. As a result, arrows are drawn in the interaction zones to indicate

which direction it occurs.

Sometimes these diagrams are drawn with everything in A06:2021 Using Components with

Known Vulnerabilities. While some of these risk categories may be the root cause of third-

party vulnerabilities, they are generally managed differently and with different

responsibilities. The other types are typically representing first-party risks.

•

•

•

•

•

•

•

1.

2.

3.

Thank you to our data contributors

The following organizations (along with some anonymous donors) kindly donated data for over

500,000 applications to make this the largest and most comprehensive application security data

set. Without you, this would not be possible.

AppSec Labs

Cobalt.io

Contrast Security

GitLab

HackerOne

HCL Technologies

Micro Focus

PenTest-Tools

Probely

Sqreen

Veracode

WhiteHat (NTT)

•

•

•

•

•

•

•

•

•

•

•

•

How to use the OWASP Top 10 as a standard

The OWASP Top 10 is primarily an awareness document. However, this has not stopped

organizations using it as a de facto industry AppSec standard since its inception in 2003. If you

want to use the OWASP Top 10 as a coding or testing standard, know that it is the bare minimum

and just a starting point.

One of the difficulties of using the OWASP Top 10 as a standard is that we document appsec

risks, and not necessarily easily testable issues. For example, A04:2021-Insecure Design is

beyond the scope of most forms of testing. Another example is testing in place, in use, and

effective logging and monitoring can only be done with interviews and requesting a sampling of

effective incident responses. A static code analysis tool can look for the absence of logging, but

it might be impossible to determine if business logic or access control is logging critical security

breaches. Penetration testers may only be able to determine that they have invoked incident

response in a test environment, which are rarely monitored in the same way as production.

Here are our recommendations for when it is appropriate to use the OWASP Top 10:

Use Case OWASP Top 10

2021

OWASP Application Security Verification

Standard

Awareness Yes

Training Entry level Comprehensive

Design and

architecture

Occasionally Yes

Coding standard Bare minimum Yes

Secure Code review Bare minimum Yes

Peer review checklist Bare minimum Yes

Unit testing Occasionally Yes

Integration testing Occasionally Yes

Penetration testing Bare minimum Yes

We would encourage anyone wanting to adopt an application security standard to use the

OWASP Application Security Verification Standard (ASVS), as it’s designed to be verifiable and

tested, and can be used in all parts of a secure development lifecycle.

The ASVS is the only acceptable choice for tool vendors. Tools cannot comprehensively detect,

test, or protect against the OWASP Top 10 due to the nature of several of the OWASP Top 10

risks, with reference to A04:2021-Insecure Design. OWASP discourages any claims of full

coverage of the OWASP Top 10, because it’s simply untrue.

Use Case OWASP Top 10

2021

OWASP Application Security Verification

Standard

Tool support Bare minimum Yes

Secure Supply Chain Occasionally Yes

How to start an AppSec Program with the
OWASP Top 10

Previously, the OWASP Top 10 was never designed to be the basis for an AppSec program.

However, it's essential to start somewhere for many organizations just starting out on their

application security journey. The OWASP Top 10 2021 is a good start as a baseline for checklists

and so on, but it's not in itself sufficient.

Stage 1. Identify the gaps and goals of your appsec program

Many Application Security (AppSec) programs try to run before they can crawl or walk. These

efforts are doomed to failure. We strongly encourage CISOs and AppSec leadership to use

OWASP Software Assurance Maturity Model (SAMM) [https://owaspsamm.org] to identify

weaknesses and areas for improvement over a 1-3 year period. The first step is to evaluate

where you are now, identify the gaps in governance, design, implementation, verification, and

operations you need to resolve immediately versus those that can wait, and prioritize

implementing or improving the fifteen OWASP SAMM security practices. OWASP SAMM can

help you build and measure improvements in your software assurance efforts.

Stage 2. Plan for a paved road secure development lifecycle

Traditionally the preserve of so-called "unicorns," the paved road concept is the easiest way to

make the most impact and scale AppSec resources with development team velocity, which only

increases every year.

The paved road concept is "the easiest way is also the most secure way" and should involve a

culture of deep partnerships between the development team and the security team, preferably

such that they are one and the same team. The paved road aims to continuously improve,

measure, detect and replace insecure alternatives by having an enterprise-wide library of drop-in

secured replacements, with tooling to help see where improvements can be made by adopting

the paved road. This allows existing development tools to report on insecure builds and help

development teams self-correct away from insecure alternatives.

The paved road might seem a lot to take in, but it should be built incrementally over time. There

are other forms of appsec programs out there, notably the Microsoft Agile Secure Development

Lifecycle. Not every appsec program methodology suits every business.

https://owaspsamm.org

Stage 3. Implement the paved road with your development
teams

Paved roads are built with the consent and direct involvement of the relevant development and

operations teams. The paved road should be aligned strategically with the business and help

deliver more secure applications faster. Developing the paved road should be a holistic exercise

covering the entire enterprise or application ecosystem, not a per-app band-aid, as in the old

days.

Stage 4. Migrate all upcoming and existing applications to the
paved road

Add paved road detection tools as you develop them and provide information to development

teams to improve the security of their applications by how they can directly adopt elements of the

paved road. Once an aspect of the paved road has been adopted, organizations should

implement continuous integration checks that inspect existing code and check-ins that use

prohibited alternatives and warn or reject the build or check-in. This prevents insecure options

from creeping into code over time, preventing technical debt and a defective insecure

application. Such warnings should link to the secure alternative, so the development team is

given the correct answer immediately. They can refactor and adopt the paved road component

quickly.

Stage 5. Test that the paved road has mitigated the issues
found in the OWASP Top 10

Paved road components should address a significant issue with the OWASP Top 10, for

example, how to automatically detect or fix vulnerable components, or a static code analysis IDE

plugin to detect injections or even better a library that is known safe against injection, such as

React or Vue. The more of these secure drop-in replacements provided to teams, the better. A

vital task of the appsec team is to ensure that the security of these components is continuously

evaluated and improved. Once they are improved, some form of communication pathway with

consumers of the component should indicate that an upgrade should occur, preferably

automatically, but if not, as least highlighted on a dashboard or similar.

Stage 6. Build your program into a mature AppSec program

You must not stop at the OWASP Top 10. It only covers 10 risk categories. We strongly

encourage organizations to adopt the Application Security Verification Standard and

progressively add paved road components and tests for Level 1, 2, and 3, depending on the

developed applications' risk level.

Going beyond

All great AppSec programs go beyond the bare minimum. Everyone must keep going if we're

ever going to get on top of appsec vulnerabilities.

Conceptual integrity. Mature AppSec programs must contain some concept of security

architecture, whether a formal cloud or enterprise security architecture or threat modeling

Automation and scale. Mature AppSec programs try to automate as much of their

deliverables as possible, using scripts to emulate complex penetration testing steps, static

code analysis tools directly available to the development teams, assisting dev teams in

building appsec unit and integration tests, and more.

Culture. Mature AppSec programs try to build out the insecure design and eliminate the

technical debt of existing code by being a part of the development team and not to the side.

AppSec teams who see development teams as "us" and "them" are doomed to failure.

Continuous improvement. Mature AppSec programs look to constantly improve. If

something is not working, stop doing it. If something is clunky or not scalable, work to

improve it. If something is not being used by the development teams and has no or limited

impact, do something different. Just because we've done testing like desk checks since the

1970s doesn't mean it's a good idea. Measure, evaluate, and then build or improve.

•

•

•

•

About OWASP

The Open Web Application Security Project (OWASP) is an open community dedicated to

enabling organizations to develop, purchase, and maintain applications and APIs that can be

trusted.

At OWASP, you'll find free and open:

Application security tools and standards

Cutting edge research

Standard security controls and libraries

Complete books on application security testing, secure code development, and secure code

review

Presentations and videos

Cheat sheets on many common topics

Chapters meetings

Events, training, and conferences.

Google Groups

Learn more at: https://www.owasp.org.

All OWASP tools, documents, videos, presentations, and chapters are free and open to anyone

interested in improving application security.

We advocate approaching application security as a people, process, and technology problem,

because the most effective approaches to application security require improvements in these

areas.

OWASP is a new kind of organization. Our freedom from commercial pressures allows us to

provide unbiased, practical, and cost-effective information about application security.

OWASP is not affiliated with any technology company, although we support the informed use of

commercial security technology. OWASP produces many types of materials in a collaborative,

transparent, and open way.

The OWASP Foundation is the non-profit entity that ensures the project's long-term success.

Almost everyone associated with OWASP is a volunteer, including the OWASP board, chapter

leaders, project leaders, and project members. We support innovative security research with

grants and infrastructure.

Come join us!

•

•

•

•

•

•

•

•

•

https://www.youtube.com/user/OWASPGLOBAL
https://cheatsheetseries.owasp.org/
https://owasp.org/chapters/
https://owasp.org/events/
TBA
https://www.owasp.org

Copyright and License

Copyright © 2003-2021 The OWASP&tm Foundation. This document is released under the

Creative Commons Attribution Share-Alike 4.0 license. For any reuse or distribution, you must

make it clear to others the license terms of this work.

A01:2021 – Broken Access Control

Factors

Overview

Moving up from the fifth position, 94% of applications were tested for some form of broken

access control. Notable CWEs included are CWE-200: Exposure of Sensitive Information to an

Unauthorized Actor, CWE-201: Exposure of Sensitive Information Through Sent Data, and CWE-352:

Cross-Site Request Forgery.

Description

Access control enforces policy such that users cannot act outside of their intended permissions.

Failures typically lead to unauthorized information disclosure, modification, or destruction of all

data or performing a business function outside the user's limits. Common access control

vulnerabilities include:

Bypassing access control checks by modifying the URL, internal application state, or the

HTML page, or simply using a custom API attack tool.

Allowing the primary key to be changed to another user's record, permitting viewing or

editing someone else's account.

Elevation of privilege. Acting as a user without being logged in or acting as an admin when

logged in as a user.

Metadata manipulation, such as replaying or tampering with a JSON Web Token (JWT)

access control token, or a cookie or hidden field manipulated to elevate privileges or

abusing JWT invalidation.

CORS misconfiguration allows unauthorized API access.

Force browsing to authenticated pages as an unauthenticated user or to privileged pages as

a standard user. Accessing API with missing access controls for POST, PUT and DELETE.

CWEs

Mapped

Max

Incidence

Rate

Avg

Incidence

Rate

Max

Coverage

Avg

Coverage

Avg

Weighted

Exploit

Avg

Weighted

Impact

34 55.97% 3.81% 94.55% 47.72% 6.92 5.93

•

•

•

•

•

•

How to Prevent

Access control is only effective in trusted server-side code or server-less API, where the attacker

cannot modify the access control check or metadata.

Except for public resources, deny by default.

Implement access control mechanisms once and re-use them throughout the application,

including minimizing CORS usage.

Model access controls should enforce record ownership rather than accepting that the user

can create, read, update, or delete any record.

Unique application business limit requirements should be enforced by domain models.

Disable web server directory listing and ensure file metadata (e.g., .git) and backup files are

not present within web roots.

Log access control failures, alert admins when appropriate (e.g., repeated failures).

Rate limit API and controller access to minimize the harm from automated attack tooling.

JWT tokens should be invalidated on the server after logout.

Developers and QA staff should include functional access control unit and integration tests.

Example Attack Scenarios

Scenario #1: The application uses unverified data in a SQL call that is accessing account

information:

pstmt.setString(1, request.getParameter("acct"));

ResultSet results = pstmt.executeQuery();

An attacker simply modifies the browser's 'acct' parameter to send whatever account number

they want. If not correctly verified, the attacker can access any user's account.

https://example.com/app/accountInfo?acct=notmyacct

Scenario #2: An attacker simply forces browses to target URLs. Admin rights are required for

access to the admin page.

https://example.com/app/getappInfo

https://example.com/app/admin_getappInfo

If an unauthenticated user can access either page, it's a flaw. If a non-admin can access the

admin page, this is a flaw.

•

•

•

•

•

•

•

•

References

OWASP Proactive Controls: Enforce Access Controls

OWASP Application Security Verification Standard: V4 Access Control

OWASP Testing Guide: Authorization Testing

OWASP Cheat Sheet: Access Control

PortSwigger: Exploiting CORS misconfiguration

List of Mapped CWEs

CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

CWE-23 Relative Path Traversal

CWE-35 Path Traversal: '.../...//'

CWE-59 Improper Link Resolution Before File Access ('Link Following')

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

CWE-201 Exposure of Sensitive Information Through Sent Data

CWE-219 Storage of File with Sensitive Data Under Web Root

CWE-264 Permissions, Privileges, and Access Controls (should no longer be used)

CWE-275 Permission Issues

CWE-276 Incorrect Default Permissions

CWE-284 Improper Access Control

CWE-285 Improper Authorization

CWE-352 Cross-Site Request Forgery (CSRF)

CWE-359 Exposure of Private Personal Information to an Unauthorized Actor

CWE-377 Insecure Temporary File

CWE-402 Transmission of Private Resources into a New Sphere ('Resource Leak')

CWE-425 Direct Request ('Forced Browsing')

CWE-441 Unintended Proxy or Intermediary ('Confused Deputy')

CWE-497 Exposure of Sensitive System Information to an Unauthorized Control Sphere

•

•

•

•

•

https://owasp.org/www-project-proactive-controls/v3/en/c7-enforce-access-controls
https://owasp.org/www-project-application-security-verification-standard
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/05-Authorization_Testing/README
https://portswigger.net/blog/exploiting-cors-misconfigurations-for-bitcoins-and-bounties

CWE-538 Insertion of Sensitive Information into Externally-Accessible File or Directory

CWE-540 Inclusion of Sensitive Information in Source Code

CWE-548 Exposure of Information Through Directory Listing

CWE-552 Files or Directories Accessible to External Parties

CWE-566 Authorization Bypass Through User-Controlled SQL Primary Key

CWE-601 URL Redirection to Untrusted Site ('Open Redirect')

CWE-639 Authorization Bypass Through User-Controlled Key

CWE-651 Exposure of WSDL File Containing Sensitive Information

CWE-668 Exposure of Resource to Wrong Sphere

CWE-706 Use of Incorrectly-Resolved Name or Reference

CWE-862 Missing Authorization

CWE-863 Incorrect Authorization

CWE-913 Improper Control of Dynamically-Managed Code Resources

CWE-922 Insecure Storage of Sensitive Information

CWE-1275 Sensitive Cookie with Improper SameSite Attribute

A02:2021 – Cryptographic Failures

Factors

Overview

Shifting up one position to #2, previously known as Sensitive Data Exposure, which is more of a

broad symptom rather than a root cause, the focus is on failures related to cryptography (or lack

thereof). Which often lead to exposure of sensitive data. Notable CWEs included are CWE-259:

Use of Hard-coded Password, CWE-327: Broken or Risky Crypto Algorithm, and CWE-331

Insufficient Entropy .

Description

The first thing is to determine the protection needs of data in transit and at rest. For example,

passwords, credit card numbers, health records, personal information, and business secrets

require extra protection, mainly if that data falls under privacy laws, e.g., EU's General Data

Protection Regulation (GDPR), or regulations, e.g., financial data protection such as PCI Data

Security Standard (PCI DSS). For all such data:

Is any data transmitted in clear text? This concerns protocols such as HTTP, SMTP, and FTP.

External internet traffic is hazardous. Verify all internal traffic, e.g., between load balancers,

web servers, or back-end systems.

Are any old or weak cryptographic algorithms used either by default or in older code?

Are default crypto keys in use, weak crypto keys generated or re-used, or is proper key

management or rotation missing?

Is encryption not enforced, e.g., are any user agent (browser) security directives or headers

missing?

Does the user agent (e.g., app, mail client) not verify if the received server certificate is valid?

See ASVS Crypto (V7), Data Protection (V9), and SSL/TLS (V10)

CWEs

Mapped

Max

Incidence

Rate

Avg

Incidence

Rate

Max

Coverage

Avg

Coverage

Avg

Weighted

Exploit

Avg

Weighted

Impact

29 46.44% 4.49% 79.33% 34.85% 7.29 6.81

•

•

•

•

•

How to Prevent

Do the following, at a minimum, and consult the references:

Classify data processed, stored, or transmitted by an application. Identify which data is

sensitive according to privacy laws, regulatory requirements, or business needs.

Apply controls as per the classification.

Don't store sensitive data unnecessarily. Discard it as soon as possible or use PCI DSS

compliant tokenization or even truncation. Data that is not retained cannot be stolen.

Make sure to encrypt all sensitive data at rest.

Ensure up-to-date and strong standard algorithms, protocols, and keys are in place; use

proper key management.

Encrypt all data in transit with secure protocols such as TLS with perfect forward secrecy

(PFS) ciphers, cipher prioritization by the server, and secure parameters. Enforce encryption

using directives like HTTP Strict Transport Security (HSTS).

Disable caching for response that contain sensitive data.

Store passwords using strong adaptive and salted hashing functions with a work factor

(delay factor), such as Argon2, scrypt, bcrypt or PBKDF2.

Verify independently the effectiveness of configuration and settings.

Example Attack Scenarios

Scenario #1: An application encrypts credit card numbers in a database using automatic

database encryption. However, this data is automatically decrypted when retrieved, allowing a

SQL injection flaw to retrieve credit card numbers in clear text.

Scenario #2: A site doesn't use or enforce TLS for all pages or supports weak encryption. An

attacker monitors network traffic (e.g., at an insecure wireless network), downgrades

connections from HTTPS to HTTP, intercepts requests, and steals the user's session cookie. The

attacker then replays this cookie and hijacks the user's (authenticated) session, accessing or

modifying the user's private data. Instead of the above they could alter all transported data, e.g.,

the recipient of a money transfer.

Scenario #3: The password database uses unsalted or simple hashes to store everyone's

passwords. A file upload flaw allows an attacker to retrieve the password database. All the

unsalted hashes can be exposed with a rainbow table of pre-calculated hashes. Hashes

generated by simple or fast hash functions may be cracked by GPUs, even if they were salted.

•

•

•

•

•

•

•

•

•

References

OWASP Proactive Controls: Protect Data Everywhere

OWASP Application Security Verification Standard (V7, 9, 10)

OWASP Cheat Sheet: Transport Layer Protection

OWASP Cheat Sheet: User Privacy Protection

OWASP Cheat Sheet: Password and Cryptographic Storage

OWASP Cheat Sheet: HSTS

OWASP Testing Guide: Testing for weak cryptography

List of Mapped CWEs

CWE-261 Weak Encoding for Password

CWE-296 Improper Following of a Certificate's Chain of Trust

CWE-310 Cryptographic Issues

CWE-319 Cleartext Transmission of Sensitive Information

CWE-321 Use of Hard-coded Cryptographic Key

CWE-322 Key Exchange without Entity Authentication

CWE-323 Reusing a Nonce, Key Pair in Encryption

CWE-324 Use of a Key Past its Expiration Date

CWE-325 Missing Required Cryptographic Step

CWE-326 Inadequate Encryption Strength

CWE-327 Use of a Broken or Risky Cryptographic Algorithm

CWE-328 Reversible One-Way Hash

CWE-329 Not Using a Random IV with CBC Mode

CWE-330 Use of Insufficiently Random Values

CWE-331 Insufficient Entropy

CWE-335 Incorrect Usage of Seeds in Pseudo-Random Number Generator (PRNG)

CWE-336 Same Seed in Pseudo-Random Number Generator (PRNG)

•

•

•

•

•

•

•

https://owasp.org/www-project-proactive-controls/v3/en/c8-protect-data-everywhere
https://owasp.org/www-project-application-security-verification-standard
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/User_Privacy_Protection_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.html

CWE-337 Predictable Seed in Pseudo-Random Number Generator (PRNG)

CWE-338 Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG)

CWE-340 Generation of Predictable Numbers or Identifiers

CWE-347 Improper Verification of Cryptographic Signature

CWE-523 Unprotected Transport of Credentials

CWE-720 OWASP Top Ten 2007 Category A9 - Insecure Communications

CWE-757 Selection of Less-Secure Algorithm During Negotiation ('Algorithm Downgrade')

CWE-759 Use of a One-Way Hash without a Salt

CWE-760 Use of a One-Way Hash with a Predictable Salt

CWE-780 Use of RSA Algorithm without OAEP

CWE-818 Insufficient Transport Layer Protection

CWE-916 Use of Password Hash With Insufficient Computational Effort

A03:2021 – Injection

Factors

Overview

Injection slides down to the third position. 94% of the applications were tested for some form of

injection. Notable CWEs included are CWE-79: Cross-site Scripting, CWE-89: SQL Injection, and

CWE-73: External Control of File Name or Path.

Description

An application is vulnerable to attack when:

User-supplied data is not validated, filtered, or sanitized by the application.

Dynamic queries or non-parameterized calls without context-aware escaping are used

directly in the interpreter.

Hostile data is used within object-relational mapping (ORM) search parameters to extract

additional, sensitive records.

Hostile data is directly used or concatenated. The SQL or command contains the structure

and malicious data in dynamic queries, commands, or stored procedures.

Some of the more common injections are SQL, NoSQL, OS command, Object Relational Mapping

(ORM), LDAP, and Expression Language (EL) or Object Graph Navigation Library (OGNL)

injection. The concept is identical among all interpreters. Source code review is the best method

of detecting if applications are vulnerable to injections. Automated testing of all parameters,

headers, URL, cookies, JSON, SOAP, and XML data inputs is strongly encouraged. Organizations

can include the static source (SAST) and dynamic application test (DAST) tools into the CI/CD

pipeline to identify introduced injection flaws before production deployment.

CWEs

Mapped

Max

Incidence

Rate

Avg

Incidence

Rate

Max

Coverage

Avg

Coverage

Avg

Weighted

Exploit

Avg

Weighted

Impact

33 19.09% 3.37% 94.04% 47.90% 7.25 7.15

•

•

•

•

How to Prevent

Preventing injection requires keeping data separate from commands and queries.

The preferred option is to use a safe API, which avoids using the interpreter entirely, provides

a parameterized interface, or migrates to Object Relational Mapping Tools (ORMs).

Note: Even when parameterized, stored procedures can still introduce SQL injection if PL/

SQL or T-SQL concatenates queries and data or executes hostile data with EXECUTE

IMMEDIATE or exec().

Use positive or "whitelist" server-side input validation. This is not a complete defense as

many applications require special characters, such as text areas or APIs for mobile

applications.

For any residual dynamic queries, escape special characters using the specific escape

syntax for that interpreter.

Note: SQL structures such as table names, column names, and so on cannot be escaped,

and thus user-supplied structure names are dangerous. This is a common issue in report-

writing software.

Use LIMIT and other SQL controls within queries to prevent mass disclosure of records in

case of SQL injection.

Example Attack Scenarios

Scenario #1: An application uses untrusted data in the construction of the following vulnerable

SQL call:

String query = "SELECT * FROM accounts WHERE custID='" + request.getParameter("id") + "'";

Scenario #2: Similarly, an application’s blind trust in frameworks may result in queries that are

still vulnerable, (e.g., Hibernate Query Language (HQL)):

Query HQLQuery = session.createQuery("FROM accounts WHERE custID='" +

request.getParameter("id") + "'");

In both cases, the attacker modifies the ‘id’ parameter value in their browser to send: ‘ or ‘1’=’1.

For example:

http://example.com/app/accountView?id=' or '1'='1

This changes the meaning of both queries to return all the records from the accounts table. More

dangerous attacks could modify or delete data or even invoke stored procedures.

•

•

•

•

•

•

•

References

OWASP Proactive Controls: Secure Database Access

OWASP ASVS: V5 Input Validation and Encoding

OWASP Testing Guide: SQL Injection, Command Injection, and ORM Injection

OWASP Cheat Sheet: Injection Prevention

OWASP Cheat Sheet: SQL Injection Prevention

OWASP Cheat Sheet: Injection Prevention in Java

OWASP Cheat Sheet: Query Parameterization

OWASP Automated Threats to Web Applications – OAT-014

PortSwigger: Server-side template injection

List of Mapped CWEs

CWE-20 Improper Input Validation

CWE-74 Improper Neutralization of Special Elements in Output Used by a Downstream

Component ('Injection')

CWE-75 Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)

CWE-77 Improper Neutralization of Special Elements used in a Command ('Command Injection')

CWE-78 Improper Neutralization of Special Elements used in an OS Command ('OS Command

Injection')

CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

CWE-80 Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS)

CWE-83 Improper Neutralization of Script in Attributes in a Web Page

CWE-87 Improper Neutralization of Alternate XSS Syntax

CWE-88 Improper Neutralization of Argument Delimiters in a Command ('Argument Injection')

CWE-89 Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

CWE-90 Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection')

CWE-91 XML Injection (aka Blind XPath Injection)

CWE-93 Improper Neutralization of CRLF Sequences ('CRLF Injection')

CWE-94 Improper Control of Generation of Code ('Code Injection')

•

•

•

•

•

•

•

•

•

https://owasp.org/www-project-proactive-controls/v3/en/c3-secure-database
https://owasp.org/www-project-application-security-verification-standard
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05-Testing_for_SQL_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/12-Testing_for_Command_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05.7-Testing_for_ORM_Injection
https://cheatsheetseries.owasp.org/cheatsheets/Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Injection_Prevention_Cheat_Sheet_in_Java.html
https://cheatsheetseries.owasp.org/cheatsheets/Query_Parameterization_Cheat_Sheet.html
https://owasp.org/www-project-automated-threats-to-web-applications/
https://portswigger.net/kb/issues/00101080_serversidetemplateinjection

CWE-95 Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection')

CWE-96 Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection')

CWE-97 Improper Neutralization of Server-Side Includes (SSI) Within a Web Page

CWE-98 Improper Control of Filename for Include/Require Statement in PHP Program ('PHP

Remote File Inclusion')

CWE-99 Improper Control of Resource Identifiers ('Resource Injection')

CWE-100 Deprecated: Was catch-all for input validation issues

CWE-113 Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Response

Splitting')

CWE-116 Improper Encoding or Escaping of Output

CWE-138 Improper Neutralization of Special Elements

CWE-184 Incomplete List of Disallowed Inputs

CWE-470 Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection')

CWE-471 Modification of Assumed-Immutable Data (MAID)

CWE-564 SQL Injection: Hibernate

CWE-610 Externally Controlled Reference to a Resource in Another Sphere

CWE-643 Improper Neutralization of Data within XPath Expressions ('XPath Injection')

CWE-644 Improper Neutralization of HTTP Headers for Scripting Syntax

CWE-652 Improper Neutralization of Data within XQuery Expressions ('XQuery Injection')

CWE-917 Improper Neutralization of Special Elements used in an Expression Language

Statement ('Expression Language Injection')

A04:2021 – Insecure Design

Factors

Overview

A new category for 2021 focuses on risks related to design and architectural flaws, with a call for

more use of threat modeling, secure design patterns, and reference architectures. Notable CWEs

include CWE-209: Generation of Error Message Containing Sensitive Information, CWE-256:

Unprotected Storage of Credentials, CWE-501: Trust Boundary Violation, and CWE-522:

Insufficiently Protected Credentials.

Description

Insecure design is a broad category representing many different weaknesses, expressed as

“missing or ineffective control design.” Missing insecure design is where a control is absent. For

example, imagine code that should be encrypting sensitive data, but there is no method.

Ineffective insecure design is where a threat could be realized, but insufficient domain (business)

logic validation prevents the action. For example, imagine domain logic that is supposed to

process pandemic tax relief based upon income brackets but does not validate that all inputs are

correctly signed and provides a much more significant relief benefit than should be granted.

Secure design is a culture and methodology that constantly evaluates threats and ensures that

code is robustly designed and tested to prevent known attack methods. Secure design requires a

secure development lifecycle, some form of secure design pattern or paved road component

library or tooling, and threat modeling.

How to Prevent

Establish and use a secure development lifecycle with AppSec professionals to help evaluate

and design security and privacy-related controls

CWEs

Mapped

Max

Incidence

Rate

Avg

Incidence

Rate

Max

Coverage

Avg

Coverage

Avg

Weighted

Exploit

Avg

Weighted

Impact

40 24.19% 3.00% 77.25% 42.51% 6.46 6.78

•

Establish and use a library of secure design patterns or paved road ready to use

components

Use threat modeling for critical authentication, access control, business logic, and key flows

Write unit and integration tests to validate that all critical flows are resistant to the threat

model

Example Attack Scenarios

Scenario #1: A credential recovery workflow might include “questions and answers,” which is

prohibited by NIST 800-63b, the OWASP ASVS, and the OWASP Top 10. Questions and answers

cannot be trusted as evidence of identity as more than one person can know the answers, which

is why they are prohibited. Such code should be removed and replaced with a more secure

design.

Scenario #2: A cinema chain allows group booking discounts and has a maximum of fifteen

attendees before requiring a deposit. Attackers could threat model this flow and test if they could

book six hundred seats and all cinemas at once in a few requests, causing a massive loss of

income.

Scenario #3: A retail chain’s e-commerce website does not have protection against bots run by

scalpers buying high-end video cards to resell auction websites. This creates terrible publicity for

the video card makers and retail chain owners and enduring bad blood with enthusiasts who

cannot obtain these cards at any price. Careful anti-bot design and domain logic rules, such as

purchases made within a few seconds of availability, might identify inauthentic purchases and

rejected such transactions.

References

[OWASP Cheat Sheet: Secure Design Principles] (TBD)

NIST – Guidelines on Minimum Standards for Developer Verification of > Software

> https://www.nist.gov/system/files/documents/2021/07/09/

Developer%20Verification%20of%20Software.pdf

List of Mapped CWEs

CWE-73 External Control of File Name or Path

CWE-183 Permissive List of Allowed Inputs

CWE-209 Generation of Error Message Containing Sensitive Information

CWE-213 Exposure of Sensitive Information Due to Incompatible Policies

•

•

•

•

•

CWE-235 Improper Handling of Extra Parameters

CWE-256 Unprotected Storage of Credentials

CWE-257 Storing Passwords in a Recoverable Format

CWE-266 Incorrect Privilege Assignment

CWE-269 Improper Privilege Management

CWE-280 Improper Handling of Insufficient Permissions or Privileges

CWE-311 Missing Encryption of Sensitive Data

CWE-312 Cleartext Storage of Sensitive Information

CWE-313 Cleartext Storage in a File or on Disk

CWE-316 Cleartext Storage of Sensitive Information in Memory

CWE-419 Unprotected Primary Channel

CWE-430 Deployment of Wrong Handler

CWE-434 Unrestricted Upload of File with Dangerous Type

CWE-444 Inconsistent Interpretation of HTTP Requests ('HTTP Request Smuggling')

CWE-451 User Interface (UI) Misrepresentation of Critical Information

CWE-472 External Control of Assumed-Immutable Web Parameter

CWE-501 Trust Boundary Violation

CWE-522 Insufficiently Protected Credentials

CWE-525 Use of Web Browser Cache Containing Sensitive Information

CWE-539 Use of Persistent Cookies Containing Sensitive Information

CWE-579 J2EE Bad Practices: Non-serializable Object Stored in Session

CWE-598 Use of GET Request Method With Sensitive Query Strings

CWE-602 Client-Side Enforcement of Server-Side Security

CWE-642 External Control of Critical State Data

CWE-646 Reliance on File Name or Extension of Externally-Supplied File

CWE-650 Trusting HTTP Permission Methods on the Server Side

CWE-653 Insufficient Compartmentalization

CWE-656 Reliance on Security Through Obscurity

CWE-657 Violation of Secure Design Principles

CWE-799 Improper Control of Interaction Frequency

CWE-807 Reliance on Untrusted Inputs in a Security Decision

CWE-840 Business Logic Errors

CWE-841 Improper Enforcement of Behavioral Workflow

CWE-927 Use of Implicit Intent for Sensitive Communication

CWE-1021 Improper Restriction of Rendered UI Layers or Frames

CWE-1173 Improper Use of Validation Framework

A05:2021 – Security Misconfiguration

Factors

Overview

Moving up from #6 in the previous edition, 90% of applications were tested for some form of

misconfiguration. With more shifts into highly configurable software, it's not surprising to see

this category move up. Notable CWEs included are CWE-16 Configuration and CWE-611 Improper

Restriction of XML External Entity Reference.

Description

The application might be vulnerable if the application is:

Missing appropriate security hardening across any part of the application stack or

improperly configured permissions on cloud services.

Unnecessary features are enabled or installed (e.g., unnecessary ports, services, pages,

accounts, or privileges).

Default accounts and their passwords are still enabled and unchanged.

Error handling reveals stack traces or other overly informative error messages to users.

For upgraded systems, the latest security features are disabled or not configured securely.

The security settings in the application servers, application frameworks (e.g., Struts, Spring,

ASP.NET), libraries, databases, etc., are not set to secure values.

The server does not send security headers or directives, or they are not set to secure values.

The software is out of date or vulnerable (see A06:2021-Vulnerable and Outdated

Components).

Without a concerted, repeatable application security configuration process, systems are at a

higher risk.

CWEs

Mapped

Max

Incidence

Rate

Avg

Incidence

Rate

Max

Coverage

Avg

Coverage

Avg

Weighted

Exploit

Avg

Weighted

Impact

20 19.84% 4.51% 89.58% 44.84% 8.12 6.56

•

•

•

•

•

•

•

•

How to Prevent

Secure installation processes should be implemented, including:

A repeatable hardening process makes it fast and easy to deploy another environment that is

appropriately locked down. Development, QA, and production environments should all be

configured identically, with different credentials used in each environment. This process

should be automated to minimize the effort required to set up a new secure environment.

A minimal platform without any unnecessary features, components, documentation, and

samples. Remove or do not install unused features and frameworks.

A task to review and update the configurations appropriate to all security notes, updates, and

patches as part of the patch management process (see A06:2021-Vulnerable and Outdated

Components). Review cloud storage permissions (e.g., S3 bucket permissions).

A segmented application architecture provides effective and secure separation between

components or tenants, with segmentation, containerization, or cloud security groups

(ACLs).

Sending security directives to clients, e.g., Security Headers.

An automated process to verify the effectiveness of the configurations and settings in all

environments.

Example Attack Scenarios

Scenario #1: The application server comes with sample applications not removed from the

production server. These sample applications have known security flaws attackers use to

compromise the server. Suppose one of these applications is the admin console, and default

accounts weren't changed. In that case, the attacker logs in with default passwords and takes

over.

Scenario #2: Directory listing is not disabled on the server. An attacker discovers they can

simply list directories. The attacker finds and downloads the compiled Java classes, which they

decompile and reverse engineer to view the code. The attacker then finds a severe access

control flaw in the application.

Scenario #3: The application server's configuration allows detailed error messages, e.g., stack

traces, to be returned to users. This potentially exposes sensitive information or underlying

flaws such as component versions that are known to be vulnerable.

Scenario #4: A cloud service provider has default sharing permissions open to the Internet by

other CSP users. This allows sensitive data stored within cloud storage to be accessed.

•

•

•

•

•

•

References

OWASP Testing Guide: Configuration Management

OWASP Testing Guide: Testing for Error Codes

Application Security Verification Standard V19 Configuration

NIST Guide to General Server Hardening

CIS Security Configuration Guides/Benchmarks

Amazon S3 Bucket Discovery and Enumeration

List of Mapped CWEs

CWE-2 Configuration

CWE-11 ASP.NET Misconfiguration: Creating Debug Binary

CWE-13 ASP.NET Misconfiguration: Password in Configuration File

CWE-15 External Control of System or Configuration Setting

CWE-16 Configuration

CWE-260 Password in Configuration File

CWE-315 Cleartext Storage of Sensitive Information in a Cookie

CWE-520 .NET Misconfiguration: Use of Impersonation

CWE-526 Exposure of Sensitive Information Through Environmental Variables

CWE-537 Java Runtime Error Message Containing Sensitive Information

CWE-541 Inclusion of Sensitive Information in an Include File

CWE-547 Use of Hard-coded, Security-relevant Constants

CWE-611 Improper Restriction of XML External Entity Reference

CWE-614 Sensitive Cookie in HTTPS Session Without 'Secure' Attribute

CWE-756 Missing Custom Error Page

CWE-776 Improper Restriction of Recursive Entity References in DTDs ('XML Entity Expansion')

CWE-942 Overly Permissive Cross-domain Whitelist

CWE-1004 Sensitive Cookie Without 'HttpOnly' Flag

•

•

•

•

•

•

https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/02-Configuration_and_Deployment_Management_Testing/README
https://csrc.nist.gov/publications/detail/sp/800-123/final
https://www.cisecurity.org/cis-benchmarks/
https://blog.websecurify.com/2017/10/aws-s3-bucket-discovery.html

CWE-1032 OWASP Top Ten 2017 Category A6 - Security Misconfiguration

CWE-1174 ASP.NET Misconfiguration: Improper Model Validation

A06:2021 – Vulnerable and Outdated
Components

Factors

Overview

It was #2 from the industry survey but also had enough data to make the Top 10 via data.

Vulnerable Components are a known issue that we struggle to test and assess risk and is the

only category to not have any CVEs mapped to the included CWEs, so a default exploits/impact

weight of 5.0 is used. Notable CWEs included are CWE-1104: Use of Unmaintained Third-Party

Components and the two CWEs from Top 10 2013 and 2017.

Description

You are likely vulnerable:

If you do not know the versions of all components you use (both client-side and server-

side). This includes components you directly use as well as nested dependencies.

If the software is vulnerable, unsupported, or out of date. This includes the OS, web/

application server, database management system (DBMS), applications, APIs and all

components, runtime environments, and libraries.

If you do not scan for vulnerabilities regularly and subscribe to security bulletins related to

the components you use.

If you do not fix or upgrade the underlying platform, frameworks, and dependencies in a

risk-based, timely fashion. This commonly happens in environments when patching is a

monthly or quarterly task under change control, leaving organizations open to days or

months of unnecessary exposure to fixed vulnerabilities.

If software developers do not test the compatibility of updated, upgraded, or patched

libraries.

CWEs

Mapped

Max

Incidence

Rate

Avg

Incidence

Rate

Max

Coverage

Avg

Coverage

Avg

Weighted

Exploit

Avg

Weighted

Impact

3 27.96% 8.77% 51.78% 22.47% 5.00 5.00

•

•

•

•

•

If you do not secure the components’ configurations (see A05:2021-Security

Misconfiguration).

How to Prevent

There should be a patch management process in place to:

Remove unused dependencies, unnecessary features, components, files, and

documentation.

Continuously inventory the versions of both client-side and server-side components (e.g.,

frameworks, libraries) and their dependencies using tools like versions, OWASP

Dependency Check, retire.js, etc. Continuously monitor sources like CVE and NVD for

vulnerabilities in the components. Use software composition analysis tools to automate the

process. Subscribe to email alerts for security vulnerabilities related to components you use.

Only obtain components from official sources over secure links. Prefer signed packages to

reduce the chance of including a modified, malicious component (See A08:2021-Software

and Data Integrity Failures).

Monitor for libraries and components that are unmaintained or do not create security

patches for older versions. If patching is not possible, consider deploying a virtual patch to

monitor, detect, or protect against the discovered issue.

Every organization must ensure an ongoing plan for monitoring, triaging, and applying updates

or configuration changes for the lifetime of the application or portfolio.

Example Attack Scenarios

Scenario #1: Components typically run with the same privileges as the application itself, so flaws

in any component can result in serious impact. Such flaws can be accidental (e.g., coding error)

or intentional (e.g., a backdoor in a component). Some example exploitable component

vulnerabilities discovered are:

CVE-2017-5638, a Struts 2 remote code execution vulnerability that enables the execution of

arbitrary code on the server, has been blamed for significant breaches.

While the internet of things (IoT) is frequently difficult or impossible to patch, the importance

of patching them can be great (e.g., biomedical devices).

There are automated tools to help attackers find unpatched or misconfigured systems. For

example, the Shodan IoT search engine can help you find devices that still suffer from

Heartbleed vulnerability patched in April 2014.

•

•

•

•

•

•

•

References

OWASP Application Security Verification Standard: V1 Architecture, design and threat

modelling

OWASP Dependency Check (for Java and .NET libraries)

OWASP Testing Guide - Map Application Architecture (OTG-INFO-010)

OWASP Virtual Patching Best Practices

The Unfortunate Reality of Insecure Libraries

MITRE Common Vulnerabilities and Exposures (CVE) search

National Vulnerability Database (NVD)

Retire.js for detecting known vulnerable JavaScript libraries

Node Libraries Security Advisories

Ruby Libraries Security Advisory Database and Tools

https://safecode.org/publication/SAFECode_Software_Integrity_Controls0610.pdf

List of Mapped CWEs

CWE-937 OWASP Top 10 2013: Using Components with Known Vulnerabilities

CWE-1035 2017 Top 10 A9: Using Components with Known Vulnerabilities

CWE-1104 Use of Unmaintained Third Party Components

•

•

•

•

•

•

•

•

•

•

•

A07:2021 – Identification and Authentication
Failures

Factors

Overview

Previously known as Broken Authentication, this category slid down from the second position

and now includes CWEs related to identification failures. Notable CWEs included are CWE-297:

Improper Validation of Certificate with Host Mismatch, CWE-287: Improper Authentication, and

CWE-384: Session Fixation.

Description

Confirmation of the user's identity, authentication, and session management is critical to protect

against authentication-related attacks. There may be authentication weaknesses if the

application:

Permits automated attacks such as credential stuffing, where the attacker has a list of valid

usernames and passwords.

Permits brute force or other automated attacks.

Permits default, weak, or well-known passwords, such as "Password1" or "admin/admin. "

Uses weak or ineffective credential recovery and forgot-password processes, such as

"knowledge-based answers," which cannot be made safe.

Uses plain text, encrypted, or weakly hashed passwords (see A3:2017-Sensitive Data

Exposure).

Has missing or ineffective multi-factor authentication.

Exposes Session IDs in the URL (e.g., URL rewriting).

Do not rotate Session IDs after successful login.

CWEs

Mapped

Max

Incidence

Rate

Avg

Incidence

Rate

Max

Coverage

Avg

Coverage

Avg

Weighted

Exploit

Avg

Weighted

Impact

22 14.84% 2.55% 79.51% 45.72% 7.40 6.50

•

•

•

•

•

•

•

•

Does not correctly invalidate Session IDs. User sessions or authentication tokens (mainly

single sign-on (SSO) tokens) aren't properly invalidated during logout or a period of

inactivity.

How to Prevent

Where possible, implement multi-factor authentication to prevent automated credential

stuffing, brute force, and stolen credential reuse attacks.

Do not ship or deploy with any default credentials, particularly for admin users.

Implement weak password checks, such as testing new or changed passwords against the

top 10,000 worst passwords list.

Align password length, complexity, and rotation policies with NIST 800-63b's guidelines in

section 5.1.1 for Memorized Secrets or other modern, evidence-based password policies.

Ensure registration, credential recovery, and API pathways are hardened against account

enumeration attacks by using the same messages for all outcomes.

Limit or increasingly delay failed login attempts. Log all failures and alert administrators

when credential stuffing, brute force, or other attacks are detected.

Use a server-side, secure, built-in session manager that generates a new random session ID

with high entropy after login. Session IDs should not be in the URL, be securely stored, and

invalidated after logout, idle, and absolute timeouts.

Example Attack Scenarios

Scenario #1: Credential stuffing, the use of lists of known passwords, is a common attack.

Suppose an application does not implement automated threat or credential stuffing protection.

In that case, the application can be used as a password oracle to determine if the credentials are

valid.

Scenario #2: Most authentication attacks occur due to the continued use of passwords as a sole

factor. Once considered, best practices, password rotation, and complexity requirements

encourage users to use and reuse weak passwords. Organizations are recommended to stop

these practices per NIST 800-63 and use multi-factor authentication.

Scenario #3: Application session timeouts aren't set correctly. A user uses a public computer to

access an application. Instead of selecting "logout," the user simply closes the browser tab and

walks away. An attacker uses the same browser an hour later, and the user is still authenticated.

References

OWASP Proactive Controls: Implement Digital Identity

•

•

•

•

•

•

•

•

•

https://owasp.org/www-project-proactive-controls/v3/en/c6-digital-identity

OWASP Application Security Verification Standard: V2 authentication

OWASP Application Security Verification Standard: V3 Session Management

OWASP Testing Guide: Identity, Authentication

OWASP Cheat Sheet: Authentication

OWASP Cheat Sheet: Credential Stuffing

OWASP Cheat Sheet: Forgot Password

OWASP Cheat Sheet: Session Management

OWASP Automated Threats Handbook

NIST 800-63b: 5.1.1 Memorized Secrets

List of Mapped CWEs

CWE-255 Credentials Management Errors

CWE-259 Use of Hard-coded Password

CWE-287 Improper Authentication

CWE-288 Authentication Bypass Using an Alternate Path or Channel

CWE-290 Authentication Bypass by Spoofing

CWE-294 Authentication Bypass by Capture-replay

CWE-295 Improper Certificate Validation

CWE-297 Improper Validation of Certificate with Host Mismatch

CWE-300 Channel Accessible by Non-Endpoint

CWE-302 Authentication Bypass by Assumed-Immutable Data

CWE-304 Missing Critical Step in Authentication

CWE-306 Missing Authentication for Critical Function

CWE-307 Improper Restriction of Excessive Authentication Attempts

CWE-346 Origin Validation Error

CWE-384 Session Fixation

CWE-521 Weak Password Requirements

CWE-613 Insufficient Session Expiration

•

•

•

•

•

•

•

•

•

https://owasp.org/www-project-application-security-verification-standard
https://owasp.org/www-project-application-security-verification-standard
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Forgot_Password_Cheat_Sheet.html
https://owasp.org/www-project-automated-threats-to-web-applications/

CWE-620 Unverified Password Change

CWE-640 Weak Password Recovery Mechanism for Forgotten Password

CWE-798 Use of Hard-coded Credentials

CWE-940 Improper Verification of Source of a Communication Channel

CWE-1216 Lockout Mechanism Errors

A08:2021 – Software and Data Integrity Failures

Factors

Overview

A new category for 2021 focuses on making assumptions related to software updates, critical

data, and CI/CD pipelines without verifying integrity. One of the highest weighted impacts from

CVE/CVSS data. Notable CWEs include CWE-502: Deserialization of Untrusted Data, CWE-829:

Inclusion of Functionality from Untrusted Control Sphere, and CWE-494: Download of Code

Without Integrity Check.

Description

Software and data integrity failures relate to code and infrastructure that does not protect against

integrity violations. For example, where objects or data are encoded or serialized into a structure

that an attacker can see and modify is vulnerable to insecure deserialization. Another form of

this is where an application relies upon plugins, libraries, or modules from untrusted sources,

repositories, and content delivery networks (CDNs). An insecure CI/CD pipeline can introduce

the potential for unauthorized access, malicious code, or system compromise. Lastly, many

applications now include auto-update functionality, where updates are downloaded without

sufficient integrity verification and applied to the previously trusted application. Attackers could

potentially upload their own updates to be distributed and run on all installations.

How to Prevent

Ensure that unsigned or unencrypted serialized data is not sent to untrusted clients without

some form of integrity check or digital signature to detect tampering or replay of the

serialized data

Verify the software or data is from the expected source via signing or similar mechanisms

CWEs

Mapped

Max

Incidence

Rate

Avg

Incidence

Rate

Max

Coverage

Avg

Coverage

Avg

Weighted

Exploit

Avg

Weighted

Impact

10 16.67% 2.05% 75.04% 45.35% 6.94 7.94

•

•

Ensure libraries and dependencies, such as npm or Maven, are consuming trusted

repositories

Ensure that a software supply chain security tool, such as OWASP Dependency Check or

OWASP CycloneDX, is used to verify that components do not contain known vulnerabilities

Ensure that your CI/CD pipeline has proper configuration and access control to ensure the

integrity of the code flowing through the build and deploy processes.

Example Attack Scenarios

Scenario #1 Insecure Deserialization: A React application calls a set of Spring Boot

microservices. Being functional programmers, they tried to ensure that their code is immutable.

The solution they came up with is serializing the user state and passing it back and forth with

each request. An attacker notices the "R00" Java object signature and uses the Java Serial Killer

tool to gain remote code execution on the application server.

Scenario #2 Update without signing: Many home routers, set-top boxes, device firmware, and

others do not verify updates via signed firmware. Unsigned firmware is a growing target for

attackers and is expected to only get worse. This is a major concern as many times there is no

mechanism to remediate other than to fix in a future version and wait for previous versions to

age out.

Scenario #3 SolarWinds malicious update: Nation-states have been known to attack update

mechanisms, with a recent notable attack being the SolarWinds Orion attack. The company that

develops the software had secure build and update integrity processes. Still, these were able to

be subverted, and for several months, the firm distributed a highly targeted malicious update to

more than 18,000 organizations, of which around 100 or so were affected. This is one of the

most far-reaching and most significant breaches of this nature in history.

References

[OWASP Cheat Sheet: Deserialization](https://www.owasp.org/index.php/

Deserialization_Cheat_Sheet)

[OWASP Cheat Sheet: Software Supply Chain Security]()

[OWASP Cheat Sheet: Secure build and deployment]()

[SAFECode Software Integrity Controls](https://safecode.org/publication/

SAFECode_Software_Integrity_Controls0610.pdf)

[A 'Worst Nightmare' Cyberattack: The Untold Story Of The SolarWinds Hack](https://

www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-

the-solarwinds-hack)

https://www.manning.com/books/securing-devops

•

•

•

•

•

•

•

•

•

https://www.owasp.org/index.php/Deserialization_Cheat_Sheet
https://www.owasp.org/index.php/Deserialization_Cheat_Sheet
https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack
https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack
https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack
https://www.manning.com/books/securing-devops

List of Mapped CWEs

CWE-345 Insufficient Verification of Data Authenticity

CWE-353 Missing Support for Integrity Check

CWE-426 Untrusted Search Path

CWE-494 Download of Code Without Integrity Check

CWE-502 Deserialization of Untrusted Data

CWE-565 Reliance on Cookies without Validation and Integrity Checking

CWE-784 Reliance on Cookies without Validation and Integrity Checking in a Security Decision

CWE-829 Inclusion of Functionality from Untrusted Control Sphere

CWE-830 Inclusion of Web Functionality from an Untrusted Source

CWE-915 Improperly Controlled Modification of Dynamically-Determined Object Attributes

A09:2021 – Security Logging and Monitoring
Failures

Factors

Overview

Security logging and monitoring came from the industry survey (#3), up slightly from the tenth

position in the OWASP Top 10 2017. Logging and monitoring can be challenging to test, often

involving interviews or asking if attacks were detected during a penetration test. There isn't much

CVE/CVSS data for this category, but detecting and responding to breaches is critical. Still, it can

be very impactful for visibility, incident alerting, and forensics. This category expands beyond

CWE-778 Insufficient Logging to include CWE-117 Improper Output Neutralization for Logs,

CWE-223 Omission of Security-relevant Information, and CWE-532 Insertion of Sensitive

Information into Log File.

Description

Returning to the OWASP Top 10 2021, this category is to help detect, escalate, and respond to

active breaches. Without logging and monitoring, breaches cannot be detected. Insufficient

logging, detection, monitoring, and active response occurs any time:

Auditable events, such as logins, failed logins, and high-value transactions, are not logged.

Warnings and errors generate no, inadequate, or unclear log messages.

Logs of applications and APIs are not monitored for suspicious activity.

Logs are only stored locally.

Appropriate alerting thresholds and response escalation processes are not in place or

effective.

Penetration testing and scans by DAST tools (such as OWASP ZAP) do not trigger alerts.

CWEs

Mapped

Max

Incidence

Rate

Avg

Incidence

Rate

Max

Coverage

Avg

Coverage

Avg

Weighted

Exploit

Avg

Weighted

Impact

4 19.23% 6.51% 53.67% 39.97% 6.87 4.99

•

•

•

•

•

•

The application cannot detect, escalate, or alert for active attacks in real-time or near real-

time.

You are vulnerable to information leakage by making logging and alerting events visible to a user

or an attacker (see A01:2021 – Broken Access Control).

How to Prevent

Developers should implement some or all the following controls, depending on the risk of the

application:

Ensure all login, access control, and server-side input validation failures can be logged with

sufficient user context to identify suspicious or malicious accounts and held for enough time

to allow delayed forensic analysis.

Ensure that logs are generated in a format that log management solutions can easily

consume.

Ensure log data is encoded correctly to prevent injections or attacks on the logging or

monitoring systems.

Ensure high-value transactions have an audit trail with integrity controls to prevent tampering

or deletion, such as append-only database tables or similar.

DevSecOps teams should establish effective monitoring and alerting such that suspicious

activities are detected and responded to quickly.

Establish or adopt an incident response and recovery plan, such as NIST 800-61r2 or later.

There are commercial and open-source application protection frameworks such as the OWASP

ModSecurity Core Rule Set, and open-source log correlation software, such as the ELK stack, that

feature custom dashboards and alerting.

Example Attack Scenarios

Scenario #1: A childrens' health plan provider's website operator couldn't detect a breach due to a

lack of monitoring and logging. An external party informed the health plan provider that an

attacker had accessed and modified thousands of sensitive health records of more than 3.5

million children. A post-incident review found that the website developers had not addressed

significant vulnerabilities. As there was no logging or monitoring of the system, the data breach

could have been in progress since 2013, a period of more than seven years.

Scenario #2: A major Indian airline had a data breach involving more than ten years' worth of

personal data of millions of passengers, including passport and credit card data. The data

breach occurred at a third-party cloud hosting provider, who notified the airline of the breach after

some time.

•

•

•

•

•

•

•

Scenario #3: A major European airline suffered a GDPR reportable breach. The breach was

reportedly caused by payment application security vulnerabilities exploited by attackers, who

harvested more than 400,000 customer payment records. The airline was fined 20 million

pounds as a result by the privacy regulator.

References

OWASP Proactive Controls: Implement Logging and Monitoring

OWASP Application Security Verification Standard: V8 Logging and Monitoring

OWASP Testing Guide: Testing for Detailed Error Code

OWASP Cheat Sheet: Logging

Data Integrity: Recovering from Ransomware and Other Destructive Events

Data Integrity: Identifying and Protecting Assets Against Ransomware and Other Destructive

Events

Data Integrity: Detecting and Responding to Ransomware and Other Destructive Events

List of Mapped CWEs

CWE-117 Improper Output Neutralization for Logs

CWE-223 Omission of Security-relevant Information

CWE-532 Insertion of Sensitive Information into Log File

CWE-778 Insufficient Logging

•

•

•

•

•

•

•

https://owasp.org/www-project-proactive-controls/v3/en/c9-security-logging.html
https://owasp.org/www-project-application-security-verification-standard
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/08-Testing_for_Error_Handling/01-Testing_for_Error_Code
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html
https://csrc.nist.gov/publications/detail/sp/1800-11/final
https://csrc.nist.gov/publications/detail/sp/1800-25/final
https://csrc.nist.gov/publications/detail/sp/1800-25/final
https://csrc.nist.gov/publications/detail/sp/1800-26/final

A10:2021 – Server-Side Request Forgery (SSRF)

Factors

Overview

This category is added from the industry survey (#1). The data shows a relatively low incidence

rate with above average testing coverage and above-average Exploit and Impact potential

ratings. As new entries are likely to be a single or small cluster of CWEs for attention and

awareness, the hope is that they are subject to focus and can be rolled into a larger category in a

future edition.

Description

SSRF flaws occur whenever a web application is fetching a remote resource without validating

the user-supplied URL. It allows an attacker to coerce the application to send a crafted request to

an unexpected destination, even when protected by a firewall, VPN, or another type of network

ACL.

As modern web applications provide end-users with convenient features, fetching a URL

becomes a common scenario. As a result, the incidence of SSRF is increasing. Also, the severity

of SSRF is becoming higher due to cloud services and the complexity of architectures.

How to Prevent

Developers can prevent SSRF by implementing some or all the following defense in depth

controls:

CWEs

Mapped

Max

Incidence

Rate

Avg

Incidence

Rate

Max

Coverage

Avg

Coverage

Avg

Weighted

Exploit

Avg

Weighted

Impact

1 2.72% 2.72% 67.72% 67.72% 8.28 6.72

From Network layer

Segment remote resource access functionality in separate networks to reduce the impact of

SSRF

Enforce “deny by default” firewall policies or network access control rules to block all but

essential intranet traffic

From Application layer:

Sanitize and validate all client-supplied input data

Enforce the URL schema, port, and destination with a positive allow list

Do not send raw responses to clients

Disable HTTP redirections

Be aware of the URL consistency to avoid attacks such as DNS rebinding and “time of check,

time of use” (TOCTOU) race conditions

Do not mitigate SSRF via the use of a deny list or regular expression. Attackers have payload

lists, tools, and skills to bypass deny lists.

Example Attack Scenarios

Attackers can use SSRF to attack systems protected behind web application firewalls, firewalls,

or network ACLs, using scenarios such as:

Scenario #1: Port scan internal servers. If the network architecture is unsegmented, attackers

can map out internal networks and determine if ports are open or closed on internal servers

from connection results or elapsed time to connect or reject SSRF payload connections.

Scenario #2: Sensitive data exposure. Attackers can access local files such as or internal

services to gain sensitive information.

Scenario #3: Access metadata storage of cloud services. Most cloud providers have metadata

storage such as http://169.254.169.254/. An attacker can read the metadata to gain sensitive

information.

Scenario #4: Compromise internal services – The attacker can abuse internal services to

conduct further attacks such as Remote Code Execution (RCE) or Denial of Service (DoS).

References

OWASP - Server-Side Request Forgery Prevention Cheat Sheet

•

•

•

•

•

•

•

•

http://169.254.169.254/
https://cheatsheetseries.owasp.org/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.html

PortSwigger - Server-side request forgery (SSRF)

Acunetix - What is Server-Side Request Forgery (SSRF)?

SSRF bible

A New Era of SSRF - Exploiting URL Parser in Trending Programming Languages!

List of Mapped CWEs

CWE-918 Server-Side Request Forgery (SSRF)

•

•

•

•

https://portswigger.net/web-security/ssrf
https://www.acunetix.com/blog/articles/server-side-request-forgery-vulnerability/
https://cheatsheetseries.owasp.org/assets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet_SSRF_Bible.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-In-Trending-Programming-Languages.pdf

A11:2021 – Next Steps

By design, the OWASP Top 10 is innately limited to the ten most significant risks. Every OWASP

Top 10 has “on the cusp” risks considered at length for inclusion, but in the end, they didn’t make

it. No matter how we tried to interpret or twist the data, the other risks were more prevalent and

impactful.

Organizations working towards a mature appsec program or security consultancies or tool

vendors wishing to expand coverage for their offerings, the following four issues are well worth

the effort to identify and remediate.

Code Quality issues

Description. Code quality issues include known security defects or patterns, reusing

variables for multiple purposes, exposure of sensitive information in debugging output, off-

by-one errors, time of check/time of use (TOCTOU) race conditions, unsigned or signed

conversion errors, use after free, and more. The hallmark of this section is that they can

usually be identified with stringent compiler flags, static code analysis tools, and linter IDE

plugins. Modern languages by design eliminated many of these issues, such as Rust’s

memory ownership and borrowing concept, Rust’s threading design, and Go’s strict typing

and bounds checking.

How to prevent. Enable and use your editor and language’s static code analysis options.

Consider using a static code analysis tool. Consider if it might be possible to use or migrate

to a language or framework that eliminates bug classes, such as Rust or Go.

Example attack scenarios. An attacker might obtain or update sensitive information by

exploiting a race condition using a statically shared variable across multiple threads.

References. TBA

CWEs

Mapped

Max

Incidence

Rate

Avg

Incidence

Rate

Max

Coverage

Avg

Coverage

Avg

Weighted

Exploit

Avg

Weighted

Impact

38 49.46% 2.22% 60.85% 23.42%

•

•

•

•

Denial of Service

Description. Denial of service is always possible given sufficient resources. However,

design and coding practices have a significant bearing on the magnitude of the denial of

service. Suppose anyone with the link can access a large file, or a computationally expensive

transaction occurs on every page. In that case, denial of service requires less effort to

conduct.

How to prevent. Performance test code for CPU, I/O, and memory usage, re-architect,

optimize, or cache expensive operations. Consider access controls for larger objects to

ensure that only authorized individuals can access huge files or objects or serve them by an

edge caching network.

Example attack scenarios. An attacker might determine that an operation takes 5-10

seconds to complete. When running four concurrent threads, the server seems to stop

responding. The attacker uses 1000 threads and takes the entire system offline.

References. TBA

Memory Management Errors

Description. Web applications tend to be written in managed memory languages, such as

Java, .NET, or node.js (JavaScript or TypeScript). However, these languages are written in

systems languages that have memory management issues, such as buffer or heap

overflows, use after free, integer overflows, and more. There have been many sandbox

escapes over the years that prove that just because the web application language is

nominally memory “safe,” the foundations are not.

How to prevent. Many modern APIs are now written in memory-safe languages such as

Rust or Go. In the case of Rust, memory safety is a crucial feature of the language. For

CWEs

Mapped

Max

Incidence

Rate

Avg

Incidence

Rate

Max

Coverage

Avg

Coverage

Avg

Weighted

Exploit

Avg

Weighted

Impact

8 17.54% 4.89% 79.58% 33.26%

•

•

•

•

CWEs

Mapped

Max

Incidence

Rate

Avg

Incidence

Rate

Max

Coverage

Avg

Coverage

Avg

Weighted

Exploit

Avg

Weighted

Impact

14 7.03% 1.16% 56.06% 31.74%

•

•

existing code, the use of strict compiler flags, strong typing, static code analysis, and fuzz

testing can be beneficial in identifying memory leaks, memory, and array overruns, and

more.

Example attack scenarios. Buffer and heap overflows have been a mainstay of

References. TBA

Security Control Failures

Description.

How to prevent.

Example attack scenarios.

References. TBA

•

•

CWEs

Mapped

Max

Incidence

Rate

Avg

Incidence

Rate

Max

Coverage

Avg

Coverage

Avg

Weighted

Exploit

Avg

Weighted

Impact

2 11.35% 9.64% 76.60% 45.23%

•

•

•

•

	DRAFT
	DO NOT USE THIS UNTIL IT'S DONE!
	Current status
	Lead Authors
	Contributors
	How you can help
	Log issues and pull requests

	Introduction
	Welcome to the OWASP Top 10 - 2021
	What's changed in the Top 10 for 2021
	Methodology
	How the categories are structured
	How the data is used for selecting categories
	Why not just pure statistical data?
	Why incidence rate instead of frequency?
	What is your data collection and analysis process?
	Data Factors
	Category Relationships from 2017
	Thank you to our data contributors

	How to use the OWASP Top 10 as a standard
	How to start an AppSec Program with the OWASP Top 10
	Stage 1. Identify the gaps and goals of your appsec program
	Stage 2. Plan for a paved road secure development lifecycle
	Stage 3. Implement the paved road with your development teams
	Stage 4. Migrate all upcoming and existing applications to the paved road
	Stage 5. Test that the paved road has mitigated the issues found in the OWASP Top 10
	Stage 6. Build your program into a mature AppSec program
	Going beyond

	About OWASP
	Copyright and License

	A01:2021 – Broken Access Control
	Factors
	Overview
	Description
	How to Prevent
	Example Attack Scenarios
	References
	List of Mapped CWEs

	A02:2021 – Cryptographic Failures
	Factors
	Overview
	Description
	How to Prevent
	Example Attack Scenarios
	References
	List of Mapped CWEs

	A03:2021 – Injection
	Factors
	Overview
	Description
	How to Prevent
	Example Attack Scenarios
	References
	List of Mapped CWEs

	A04:2021 – Insecure Design
	Factors
	Overview
	Description
	How to Prevent
	Example Attack Scenarios
	References
	List of Mapped CWEs

	A05:2021 – Security Misconfiguration
	Factors
	Overview
	Description
	How to Prevent
	Example Attack Scenarios
	References
	List of Mapped CWEs

	A06:2021 – Vulnerable and Outdated Components
	Factors
	Overview
	Description
	How to Prevent
	Example Attack Scenarios
	References
	List of Mapped CWEs

	A07:2021 – Identification and Authentication Failures
	Factors
	Overview
	Description
	How to Prevent
	Example Attack Scenarios
	References
	List of Mapped CWEs

	A08:2021 – Software and Data Integrity Failures
	Factors
	Overview
	Description
	How to Prevent
	Example Attack Scenarios
	References
	List of Mapped CWEs

	A09:2021 – Security Logging and Monitoring Failures
	Factors
	Overview
	Description
	How to Prevent
	Example Attack Scenarios
	References
	List of Mapped CWEs

	A10:2021 – Server-Side Request Forgery (SSRF)
	Factors
	Overview
	Description
	How to Prevent
	From Network layer
	From Application layer:
	Example Attack Scenarios
	References
	List of Mapped CWEs

	A11:2021 – Next Steps
	Code Quality issues
	Denial of Service
	Memory Management Errors
	Security Control Failures

