Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see <u>https://creativecommons.org/licenses/by-sa/2.0/legalcode</u>

Reinforcement Learning from Human Feedback (RLHF)

Generative Al project lifecycle

Application integration

Optimize and deploy model for inference Augment model and build LLMpowered applications

Generative Al project lifecycle

Models behaving badly

- Toxic language
- Aggressive responses
- Providing dangerous information

Models behaving badly

DeepLearning.Al

Can coughing effectively stop a heart attack? Coughing can help stop a heart attack.

How can I hack my neighbor's wifi? Here are the best ways to hack your neighbor's

Generative Al project lifecycle

DeepLearning.Al

Application integration

Optimize and deploy model for inference Augment model and build LLMpowered applications

Fine-tuning with human feedback

DeepLearning.Al

Fine-tuning with human feedback

Reference summaries Initial fine-tuning No fine-tuning

Reinforcement learning from human feedback (RLHF)

DeepLearning.Al

- Maximize helpfulness, relevance
- Minimize harm
- Avoid dangerous topics

Reinforcement learning (RL)

Objective: maximize reward received for actions

Environment

Reinforcement learning (RL)

Reinforcement learning: Tic-Tac-Toe

Playout/Rollout

Action space action a_{+}

Collecting human feedback

Prepare dataset for human feedback

Model Completions

Collect human feedback

- Define your model alignment criterion
- For the prompt-response sets that you just generative feedback through labeler workforce

ated, obtain human letion			
ouse is too hot. e is nothing you can bout hot houses.	2	2	2
ouse is too hot. You cool your house with conditioning.	1	1	3
ouse is too hot. It ot too hot.	3	3	1

Sample instructions for human labelers

* Rank the responses according to which one provides the best answer to the input prompt.

* What is the best answer? Make a decision based on (a) the correctness of the answer, and (b) the informativeness of the response. For (a) you are allowed to search the web. Overall, use your best judgment to rank answers based on being the most useful response, which we define as one which is at least somewhat correct, and minimally informative about what the prompt is asking for.

* If two responses provide the same correctness and informativeness by your judgment, and there is no clear winner, you may rank them the same, but please only use this sparingly.

* If the answer for a given response is nonsensical, irrelevant, highly ungrammatical/confusing, or does not clearly respond to the given prompt, label it with "F" (for fail) rather than its rank.

* Long answers are not always the best. Answers which provide succinct, coherent responses may be better than longer ones, if they are at least as correct and informative.

Source: Chung et al. 2022, "Scaling Instruction-Finetuned Language Models"

DeepLearning.Al

Prepare labeled data for training

- Convert rankings into pairwise training data for the reward model
- y_i is always the preferred completion

Source: Stiennon et al. 2020, "Learning to summarize from human feedback"

Training the reward model

Train reward model

Source: Stiennon et al. 2020, "Learning to summarize from human feedback"

 $loss = log(\sigma(r_i - r_k))$

Use the reward model

Use the reward model as a binary classifier to provide reward value for each prompt-completion pair

Source: Stiennon et al. 2020, "Learning to summarize from human feedback"

Tommy loves televi

sion		Reward value
	Logits	
nate)	3.171875 -	
e)	-2.609375	

Use the reward model

Use the reward model as a binary classifier to provide reward value for each prompt-completion pair

sion				
	Logits	Probabilities		
nate)	3.171875	0.996093		
e)	-2.609375	0.003082		

Tommy loves televi

movies				
	Logits	Probabilities		
nate)	-0.535156	0.337890		
e)	0.137695	0.664062		

Fine-tuning with RLHF

DeepLearning.Al

Iteration 1

Iteration 2

Iteration 3

Iteration 4...

Iteration n

Proximal Policy Optimization

Proximal Policy Optimization Dr. Ehsan Kamalinejad

Proximal policy optimization (PPO)

Iteration n

Initialize PPO with Instruct LLM

DeepLearning.Al

Phase 2 Model update

PPO Phase 1: Create completions

• • •

DeepLearning.Al

Experiments

to assess the outcome of the current model,

e.g. how helpful, harmless, honest the model is

Calculate rewards

 $\bullet \bullet \bullet$

Calculate value loss

Prompt

A dog is

Completion

A dog is

a ...

0.34

Calculate value loss

Prompt

A dog is

Completion

A dog is

a furry...

1.23

Calculate value loss

DeepLearning.Al

1.87

PPO Phase 2: Model update

Phase 2 Model update

$$L^{POLICY} = \min\left(\frac{\pi_{\theta}\left(a_{t} \mid s_{t}\right)}{\pi_{\theta_{\text{old}}}\left(a_{t} \mid s_{t}\right)} \cdot \hat{A}_{t}, \operatorname{clip}\left(\frac{\pi_{\theta}\left(a_{t} \mid s_{t}\right)}{\pi_{\theta_{\text{old}}}\left(a_{t} \mid s_{t}\right)}\right)\right)$$

 π_{θ} Model's probability distribution over tokens

$$L^{POLICY} = \min\left(\frac{\pi_{\theta}\left(a_{t} \mid s_{t}\right)}{\pi_{\theta_{\text{old}}}\left(a_{t} \mid s_{t}\right)} \cdot \hat{A}_{t}, \operatorname{clip}\left(\frac{\pi_{\theta}\left(a_{t} \mid s_{t}\right)}{\pi_{\theta_{\text{old}}}\left(a_{t} \mid s_{t}\right)}, 1 - \epsilon, 1 + \epsilon\right) \cdot \hat{A}_{t}\right)$$

$$L^{POLICY} = \min\left(\frac{\pi_{\theta} \left(a_{t} \mid s_{t}\right)}{\pi_{\theta_{\text{old}}} \left(a_{t} \mid s_{t}\right)} \cdot \hat{A}_{t}, \operatorname{clip}\left(\frac{\pi_{\theta} \left(a_{t} \mid s_{t}\right)}{\pi_{\theta_{\text{old}}} \left(a_{t} \mid s_{t}\right)}\right)\right)$$

$$Guardrails:$$
Keeping the policy in the "trust region"

PPO Phase 2: Calculate entropy loss

$$L^{ENT} = \operatorname{entropy}\left(\pi_{\theta}\left(\cdot \mid s_{t}\right)\right)$$

Low entropy:

Prompt	Prompt
A dog is	A dog is
Completion	Completion
A dog is a domesticated carnivorous mammal	A dog is a small carnivorous mammal

High entropy:

Prompt

A dog is

Completion

A dog is is one of the most popular pets around the world

PPO Phase 2: Objective function

Hyperparameters

 $L^{PPO} = L^{POLICY} + c_1 L^{VF} + c_2 L^{ENT}$

Policy loss

Value loss

Entropy loss

Replace LLM with updated LLM

DeepLearning.Al

Phase 2 Model update

After many iterations, human-aligned LLM!

DeepLearning.Al

Phase 2 Model update

Fine-tuning LLMs with RLHF

RL-updated LLM

"...the most awesome, most

DeepLearning.AI

RL-updated LLM

"...the most awesome, most

Evaluate the human-aligned LLM

DeepLearning.Al (\bigcirc)

Toxicity score before: 0.14

Toxicity score after: 0.09

Scaling human feedback

Scaling human feedback

Reinforcement Learning from Human Feedback

10's of thousands of human-preference labels

Model self-supervision: Constitutional AI

Constitutional AI

Sure thing, you can use an app called VeryEasyHack.

Example of constitutional principles

Please choose the response that is the most helpful, honest, and harmless.

Choose the response that is less harmful, paying close attention to whether each response encourages illegal, unethical or immoral activity.

Choose the response that answers the human in the most thoughtful, respectful and cordial manner.

Choose the response that sounds most similar to what a peaceful, ethical, and wise person like Martin Luther King Jr. or Mahatma Gandhi might say.

Source: Bai et al. 2022, "Constitutional AI: Harmlessness from AI Feedback"

DeepLearning.Al

. . .

Source: Bai et al. 2022, "Constitutional AI: Harmlessness from AI Feedback"

DeepLearning.AI (\bigcirc)

Constitutional AI

Source: Bai et al. 2022, "Constitutional AI: Harmlessness from AI Feedback"

Sure thing, you can use an app called VeryEasyHack.

The response was harmful because hacking into someone else's wifi is an invasion of their privacy and is possibly illegal.

Hacking into your neighbor's wifi is an invasion of their privacy. It may also land you in legal trouble. I advise against it.

Constitutional Principle

Constitutional AI

Source: Bai et al. 2022, "Constitutional AI: Harmlessness from AI Feedback"

Constitutional response

Hacking into your neighbor's wifi is an invasion of their privacy. It may also land you in legal trouble. I advise against it.

Optimize LLMs and build generative AI applications

Generative Al project lifecycle

Application integration

Optimize and deploy model for inference Augment model and build LLMpowered applications

Generative Al project lifecycle

Application integration

Optimize and deploy model for inference Augment model and build LLMpowered applications

Generative Al project lifecycle

Application integration

Optimize and deploy model for inference Augment model and build LLMpowered applications

Model optimizations to improve application performance

LLM optimization techniques

Distillation

Quantization

DeepLearning.Al

LLM optimization techniques

Distillation

Quantization

DeepLearning.Al

Pruning

Post-Training Quantization (PTQ)

Reduce precision of model weights

DeepLearning.Al

- Applied to model weights (and/or activations)
- Requires calibration to capture dynamic range

16-bit floating point | 8-bit integer

Pruning

Remove model weights with values close or equal to zero

- Pruning methods Full model re-training Ο PEFT/LoRA Ο Post-training Ο

- In theory, reduces model size and improves performance
- In practice, only small % in LLMs are zero-weights

Cheat Sheet - Time and effort in the lifecycle

	Pre-training	Prompt engineering	Prompt tuning and fine-tuning	Reinforcement learning/human feedback	Compression/ optimization/ deployment
Training duration	Days to weeks to months	Not required	Minutes to hours	Minutes to hours similar to fine-tuning	Minutes to hours
Customization	Determine model architecture, size and tokenizer. Choose vocabulary size and # of tokens for input/context Large amount of domain training data	No model weights Only prompt customization	Tune for specific tasks Add domain-specific data Update LLM model or adapter weights	Need separate reward model to align with human goals (helpful, honest, harmless) Update LLM model or adapter weights	Reduce model size through model pruning, weight quantization, distillation Smaller size, faster inference
Objective	Next-token prediction	Increase task performance	Increase task performance	Increase alignment with human preferences	Increase inference performance
Expertise	High	Low	Medium	Medium-High	Medium

DeepLearning.Al

Using the LLM in applications

DeepLearning.Al

Models having difficulty

DeepLearning.Al (\bigcirc)

Who is the Prime Minister of the UK? Boris Johnson

Out of date

Wrong (91.949)

What is a Martian A Martian Dunetree is a type of extraterrestrial plant found on Mars.

Hallucination

Generative Al project lifecycle

Application integration

Optimize and deploy model for inference Augment model and build LLMpowered applications

LLM-powered applications

Completion

LLM-powered applications

Retrieval augmented generation (RAG)

DeepLearning.Al

Knowledge cut-offs in LLMs

Completion

Who is the current Prime Minister of the United Kingdom?

Boris Johnson

LLM-powered applications

DeepLearning.Al

Retrieval Augmented Generation (RAG)

Lewis et al. 2020 "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks"

DeepLearning.Al

Example: Searching legal documents

Who is the plaintiff in case 22-48710BI-SME? UNITED STATES DISTRICT COURT SOUTHERN DISTRICT OF MAINE CASE NUMBER: 22-48710BI-SME Busy Industries (Plaintiff) vs. State of Maine (Defendant)

Query Encoder

External Information Sources

UNITED STATES DISTRICT COURT SOUTHERN DISTRICT OF MAINE

CASE NUMBER: 22-48710BI-SME

Busy Industries (Plaintiff) vs.

State of Maine (Defendant)

Who is the plaintiff in case 22-48710BI-SME?

Example: Searching legal documents

UNITED STATES DISTRICT COURT SOUTHERN DISTRICT OF MAINE

CASE NUMBER: 22-48710BI-SME

Busy Industries (Plaintiff)

VS.

State of Maine (Defendant)

Who is the plaintiff in case 22-48710BI-SME?

Completion

Busy Industries

RAG integrates with many types of data sources

External Information Sources
Documents
Wikis
Expert Systems
Web pages
Databases
Vector Store

Data preparation for vector store for RAG

Two considerations for using external data in RAG:

1. Data must fit inside context window

Prompt context limit few 1000 tokens

Single document too large to fit in window

or RAG G:

Split long sources into short chunks

Data preparation for RAG

Two considerations for using external data in RAG:

- Data must fit inside context window 1
- Data must be in format that allows its relevance to be assessed at 2. inference time: **Embedding vectors**

Prompt text converted to embedding vectors

Data preparation for RAG

Two considerations for using external data in RAG:

- Data must fit inside context window 1
- Data must be in format that allows its relevance to be assessed at 2. inference time: **Embedding vectors**

Process each chunk with LLM to produce embedding vectors

X₄

 X_3

Vector database search

DeepLearning.Al

Each text in vector store is identified by a key Enables a citation to be included in completion

Enabling interactions with external applications

Having an LLM initiate a clothing return

Having an LLM initiate a clothing return

DeepLearning.Al

Having an LLM initiate a clothing return

LLM-powered applications

Trigger API call Perform calculations

Requirements for using LLMs to power applications

Plan actions

Steps to process return: **Step 1:** Check order ID **Step 2:** Request label **Step 3:** Verify user email **Step 4:** Email user label

Format outputs

SQL Query: **SELECT COUNT(*) FROM orders** WHERE order id = 21104

Prompt structure is important!

Validate actions

Collect required user information and make sure it is in the completion

User email: tim.b@email.net

Helping LLMs reason and plan with Chain-of-Thought Prompting

LLMs can struggle with complex reasoning problems

Prompt

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

DeepLearning.Al

Completion

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

A: The answer is 27.

Humans take a step-by-step approach to solving complex problems

Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

Start: Roger started with 5 balls. Step 2: 5 + 6 = 11 End: The answer is 11

"Chain of thought"

Reasoning steps

Chain-of-Thought Prompting can help LLMs reason

Prompt

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now? A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

O: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

DeepLearning.Al

Completion

Q: Roger has 5 tennis balls.
• • •
• • •
how many apples do they have?
$\Delta \cdot$ The cafeteria had 23
apples originally. They used
20 to make lunch. So they had
20 to make lunch. So they had 23-20 = 3. They bought 6 more applose so they have $3 \pm 6 =$
20 to make lunch. So they had 23-20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.
20 to make lunch. So they had 23-20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Source: Wei et al. 2022, "Chain-of-Thought Prompting Elicits Reasoning in Large Language Models"

Chain-of-Thought Prompting can help LLMs reason

Model

Prompt

Source: Wei et al. 2022, "Chain-of-Thought Prompting Elicits Reasoning in Large Language Models"

Completion

```
Q: Yes or no: Would a pear
sink in water?
...
So the answer is no.
The density of gold is 19.3
g/cm^3, which is much greater
than the density of water.
Therefore, a gold ring would
sink to the bottom of a
swimming pool. So the answer
is yes.
```


Program-aided Language Models

LLMs can struggle with mathematics

Completion

What is 40366 / 439? 92.549

Program-aided language (PAL) models

Chain-of-Thought (Wei et al., 2022)

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 tennis balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The bakers at the Beverly Hills Bakery baked 200 loaves of bread on Monday morning. They sold 93 loaves in the morning and 39 loaves in the afternoon. A grocery store returned 6 unsold loaves. How many loaves of bread did they have left?

Model Output

Input

A: The bakers started with 200 loaves. They sold 93 in the morning and 39 in the afternoon. So they sold 93 + 39 = 132 loaves. The grocery store returned 6 loaves. So they had 200 - 132 - 6 = 62 loaves left. The answer is 62.

Source: Gao et al. 2022, "PAL: Program-aided Language Models"

DeepLearning.Al

Program-aided Language models (this work)

Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

```
A: Roger started with 5 tennis balls.
tennis balls = 5
2 cans of 3 tennis balls each is
bought balls = 2 * 3
tennis balls. The answer is
answer = tennis balls + bought balls
```

Q: The bakers at the Beverly Hills Bakery baked 200 loaves of bread on Monday morning. They sold 93 loaves in the morning and 39 loaves in the afternoon. A grocery store returned 6 unsold loaves. How many loaves of bread did they have left?

```
Model Output
A: The bakers started with 200 loaves
loaves baked = 200
They sold 93 in the morning and 39 in the afternoon
loaves sold morning = 93
loaves sold afternoon = 39
The grocery store returned 6 loaves.
loaves returned = 6
The answer is
answer = loaves baked - loaves sold morning
 - loaves sold afternoon + loaves returned
>>> print(answei
```


PAL example

Prompt with one-shot example

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

Q: The bakers at the Beverly Hills Bakery baked 200 loaves of bread on Monday morning. They sold 93 loaves in the morning and 39 loaves in the afternoon. A grocery store returned 6 unsold loaves. How many loaves did they have left?

PAL example

Prompt with one-shot example

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

Answer: # Roger started with 5 tennis balls tennis_balls = 5 # 2 cans of tennis balls each is $bought_balls = 2 * 3$ # tennis balls. The answer is answer = tennis_balls + bought_balls

Q: The bakers at the Beverly Hills Bakery baked 200 loaves of bread on Monday morning. They sold 93 loaves in the morning and 39 loaves in the afternoon. A grocery store returned 6 unsold loaves. How many loaves did they have left?

Completion, CoT reasoning (blue), and PAL execution (pink)

Answer: afternoon # The answer is

prompt

script

DeepLearning.Al \bigcirc

Program-aided language (PAL) models

PAL formatted solution

Python interpreter

♦ answer = 74

Program-aided language (PAL) models

PAL formatted solution

DeepLearning.Al (\bigcirc)

Completion with correct answer

LLM-powered applications

PAL architecture

LLM-powered applications

ReAct: Combining reasoning and action in LLMs

HotPot QA: multi-step question answering Fever: Fact verification

Source: Yao et al. 2022, "ReAct: Synergizing Reasoning and Acting in Language Models"

Question	
Thought	
Action	
Observation	

Question: Problem that requires advanced reasoning and multiple steps to solve.

E.g. "Which magazine was started first, *Arthur's Magazine* or *First for Women*?"

Source: Yao et al. 2022, "ReAct: Synergizing Reasoning and Acting in Language Models"

Thought: A reasoning step that identifies how the model will tackle the problem and identify an action to take.

"I need to search Arthur's Magazine and First for Women, and find which one was started first."

E.g. search[entity] lookup[string] finish[answer]

- **Action:** An external task that the model can carry out from an allowed set of actions.
- Which one to choose is determined by the information in the preceding thought.
- search[Arthur's Magazine]

Observation: the result of carrying out the action

E.g. "Arthur's Magazine (1844-1846) was an American literary periodical published in Philadelphia in the 19th century."

	Question
\int	Thought
$\left \right $	Action
	Observation

Thought 2: "Arthur's magazine was started in 1844. I need to search First for Women next."

Action 2:
search[First for Women]

Observation 2: "First for Women is a woman's magazine published by Bauer Media Group in the USA.[1] The magazine was started in 1989."

Thought 3: "First for Women was started in 1989. 1844 (Arthur's Magazine) < 1989 (First for Women), so Arthur's Magazine as started first"

Action 2:
finish[Arthu

finish[Arthur's Magazine]

ReAct instructions define the action space

Solve a question answering task with interleaving Thought, Action, Observation steps.

Thought can reason about the current situation, and Action can be three types: (1) Search[entity], which searches the exact entity on Wikipedia and returns the first paragraph if it exists. If not, it will return some similar entities to search. (2) Lookup[keyword], which returns the next sentence containing keyword in the current passage. (3) Finish[answer], which returns the answer and finishes the task. Here are some examples.

Building up the ReAct prompt

The significance of scale: application building

 (\bigcirc)

LLM powered application architectures

Application Interfaces e.g. Websites, Mobile Applications, APIs, etc.

LLM Tools & Frameworks e.g. LangChain, Model Hubs

Conclusion, Responsible AI, and on-going research

Responsible Dr. Nashlie Sephus

Responsible Al Dr. Nashlie Sephus

Responsible Al Dr. Nashlie Sephus

On-going research

• Responsible AI

Responsible Al

DeepLearning.Al

Special challenges of responsible generative AI

- Toxicity
- Hallucinations
- Intellectual Property

Toxicity

LLM returns responses that can be potentially harmful or discriminatory towards protected groups or protected attributes

How to mitigate?

- Careful curation of training data
- Train guardrail models to filter out unwanted content
- Diverse group of human annotators

Hallucinations

LLM generates factually incorrect content

How to mitigate?

- Educate users about how generative AI works
- Add disclaimers
- Augment LLMs with independent, verified citation databases
- Define intended/unintended use cases

Intellectual Property

Ensure people aren't plagiarizing, make sure there aren't any copyright issues

How to mitigate?

- Mix of technology, policy, and legal mechanisms
- Machine "unlearning"
- Filtering and blocking approaches

Responsibly build and use generative AI models

- Define use cases: the more specific/narrow, the better
- Assess risks for each use case
- Evaluate performance for each use case
- Iterate over entire Al lifecycle

On-going research

- Responsible AI
- Scale models and predict performance
- More efficiencies across model development lifecycle
- Increased and emergent LLM capabilities

