Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see <u>https://creativecommons.org/licenses/by-sa/2.0/legalcode</u>

DeepLearning.Al

Generative AI and large-language models (LLMs)

FINE-TUNING, INSTRUCTION PROMPTS, AND PARAMETER EFFICIENT FINE-TUNING

Fine-tuning with instruction prompts

GenAl project lifecycle

Application integration

Optimize and deploy model for inference Augment model and build LLMpowered applications

GenAl project lifecycle

DeepLearning.Al

Application integration

Optimize and deploy model for inference Augment model and build LLMpowered applications

Fine-tuning an LLM with instruction prompts

In-context learning (ICL) - zero shot inference

Completion

Classify this review: I loved this DVD! Sentiment: Positive

In-context learning (ICL) - zero shot inference

Completion

Classify this review: I loved this DVD! Sentiment: eived a very nice book review

In-context learning (ICL) - one/few shot inference

One-shot or Few-shot Inference

Completion

Classify this review: I loved this DVD! Sentiment: Positive

Classify this review: I don't like this chair. Sentiment: Negative

Limitations of in-context learning

```
Classify this review:
I loved this movie!
Sentiment: Positive
                                Even with
Classify this review:
                                multiple
I don't like this chair.
                                examples
Sentiment: Negative
Classify this review:
This sofa is so ugly.
Sentiment: Negative
Classify this review:
Who would use this product?
Sentiment:
       Context Window
```

DeepLearning.Al

In-context learning may not work for smaller models LLM

• Examples take up space in the context window

Instead, try **fine-tuning** the model

LLM fine-tuning at a high level

LLM pre-training

GB - TB - PB of unstructured textual data

LLM fine-tuning at a high level

LLM fine-tuning

GB - TB of labeled examples for a specific task or set of tasks

LLM fine-tuning at a high level

LLM fine-tuning

task or set of tasks

Prompt-completion pairs

Using prompts to fine-tune LLMs with instruction

LLM fine-tuning

Each prompt/completion pair includes a specific "instruction" to the LLM

Using prompts to fine-tune LLMs with instruction

LLM fine-tuning

Using prompts to fine-tune LLMs with instruction

LLM fine-tuning

Full fine-tuning updates all parameters

Improved performance

Sample prompt instruction templates

Classification / sentiment analysis

jinja: "Given the following review:\n{{review_body}}\npredict the associated rating\ \ from the following choices (1 being lowest and 5 being highest)\n- {{ answer_choices\ | join('\\n- ') }} \n||\\n{{answer_choices[star_rating-1]}}"

Text generation

jinja: Generate a {{star_rating}}-star review (1 being lowest and 5 being highest) about this product {{product_title}}. |||

Text summarization

jinja: 'Give a short sentence describing the following product review!\n{{review_body}}\ \ \n| [\n{{review_headline}}"

Source: https://github.com/bigscience-workshop/promptsource/blob/main/promptsource/templates/amazon_polarity/templates.yaml

DeepLearning.Al

{{review_body}}

LLM fine-tuning

Prepared instruction dataset

Training splits

PROMPT [],	COMPLETION[]
PROMPT[],	COMPLETION[]
PROMPT [],	COMPLETION[]
PROMPT [],	COMPLETION[]
PROMPT [],	COMPLETION[]

PROMPT[...], COMPLETION[...]

• • •

PROMPT[...], COMPLETION[...]

. . .

LLM fine-tuning

DeepLearning.Al

LLM completion:

Classify this review: I loved this DVD!

Sentiment: Neutral

Label:

Classify this review: I loved this DVD!

Sentiment: Positive

LLM fine-tuning

DeepLearning.Al

Loss: Cross-Entropy

LLM fine-tuning

Prepared instruction dataset

Training splits

PROMPT [],	COMPLETION[]
PROMPT[],	COMPLETION[]
PROMPT[],	COMPLETION[]
PROMPT [],	COMPLETION[]
PROMPT [],	COMPLETION[]

PROMPT[...], COMPLETION[...]

• • •

PROMPT[...], COMPLETION[...]

. . .

LLM fine-tuning

Prepared instruction dataset

Training splits

PROMPT [],	COMPLETION[]
PROMPT[],	COMPLETION[]
PROMPT [],	COMPLETION[]
PROMPT [],	COMPLETION[]
PROMPT [],	COMPLETION[]

PROMPT[...], COMPLETION[...]

• • •

PROMPT[...], COMPLETION[...]

. . .

Model

Instruct LLM

Fine-tuning on a single task

Fine-tuning on a single task

Fine-tuning can significantly increase the performance of a model on a specific task...

Completion

Classify this review: I loved this DVD! Sentiment: eived a very nice book review

Fine-tuning can significantly increase the performance of a model on a specific task...

Completion

Classify this review: I loved this DVD! Sentiment: POSITIVE

...but can lead to reduction in ability on other tasks

DeepLearning.Al

Completion

What is the name of the cat? Charlie the cat roamed the garden at night. Charlie

...but can lead to reduction in ability on other tasks

Completion

What is the name of the cat? Charlie the cat roamed the garden at night. The garden was positive.

How to avoid catastrophic forgetting

- First note that you might not have to!
- Fine-tune on multiple tasks at the same time
- Consider **Parameter Efficient Fine-tuning** (PEFT)

Multi-task, instruction fine-tuning

Multi-task, instruction fine-tuning

Multi-task, instruction fine-tuning

Instruction fine-tuning with FLAN

FLAN models refer to a specific set of instructions used to perform instruction fine-tuning

"The metaphorical dessert to the main course of pretraining"

FLAN

Instruction fine-tuning with FLAN

FLAN models refer to a specific set of instructions used to perform instruction fine-tuning

FLAN-T5: Fine-tuned version of pre-trained T5 model • FLAN-T5 is a great, general purpose, instruct model

Source: Chung et al. 2022, "Scaling Instruction-Finetuned Language Models"

Natural Instructions

- Cause effect classification,
- Commonsense reasoning,
- Named Entity Recognition,
- Toxic Language Detection,
- Question answering

...

372 Datasets **108** Categories 1554 Tasks

FLAN-T5: Fine-tuned version of pre-trained T5 model • FLAN-T5 is a great, general purpose, instruct model

Source: Chung et al. 2022, "Scaling Instruction-Finetuned Language Models"

Natural Instructions

- Cause effect classification,
- Commonsense reasoning,
- Named Entity Recognition,
- Toxic Language Detection,
- Question answering

...

372 Datasets **108 Categories** 1554 Tasks

SAMSum: A dialogue dataset

Sample prompt training dataset (**samsum**) to fine-tune FLAN-T5 from pretrained T5

Summarizat
summary (string)
"Amanda baked co
"Olivia and Olivelection. "
"Kim may try the get more stuff o

Source: https://github.com/google-research/FLAN/blob/2c79a31/flan/v2/templates.py#L3285

ion	Languages:		English
)			
ookies	and will bring Jer	ry some	tomorrow."
vier ar	e voting for liber	als in t	his:
e pomod done."	oro technique reco	mmended	by Tim to

Sample FLAN-T5 prompt templates

DeepLearning.Al

Sample FLAN-T5 prompt templates

"samsum": [

("{dialogue}\h\Briefly summarize that dialogue.", "{summary}"),

("Here is a dialogue:\n{dialogue}\n\nWrite a short summary!", "{summary}"),

("Dialogue:\n{dialogue}\n\nWhat is a summary of this dialogue?", "{summary}"),

("{dialogue}\n\nWhat was that dialogue about, in two sentences or less?", "{summary}"),

("Here is a dialogue:\n{dialogue}\n\nWhat were they talking about?", "{summary}"),

("Dialogue:\n{dialogue}\nWhat were the main points in that "

```
"conversation?", "{summary}"),
```

```
("Dialogue:\n{dialogue}\nWhat was going on in that conversation?",
"{summary}"),
```


Improving FLAN-T5's summarization capabilities

Improving FLAN-T5's summarization capabilities

Goal: Summarize conversations to identify actions to take

Improving FLAN-T5's summarization capabilities

Further fine-tune FLAN-T5 with a domain-specific instruction dataset (dialogsum)

Datasets	: • knkarthick/dialogsum 🗅 🛇 like 13	
Tasks: 🔁 Su	ummarization 🗧 Text2Text Generation 🕞 Text Generation	anguages: 🌐 English Multilinguality: monolingual Size Categori
Language Creato	ors: expert-generated Annotations Creators: expert-generated S	ource Datasets: original License: 🏛 mit
Dataset ca	ard 📲 Files and versions 🏉 Community 🖪	
• Dataset Property Split	review	
train (12.5k	rows)	~
id (string)	dialogue (string)	summary (string)
"train_0"	"#Person1#: Hi, Mr. Smith. I'm Doctor Hawkins. Why are you here today? #Person2#: I found it would be a good…	"Mr. Smith's getting a check-up, and Doctor Hawkins advises him to have one every year. Hawkins'll give some…
"train_1"	"#Person1#: Hello Mrs. Parker, how have you been? #Person2#: Hello Dr. Peters. Just fine thank you. Ricky…	"Mrs Parker takes Ricky for his vaccines. Dr. Peters checks the record and then gives Ricky a vaccine."
"train_2"	"#Person1#: Excuse me, did you see a set of keys? #Person2#: What kind of keys? #Person1#: Five keys and a small foot ornament. #Person2#: What a shame! I didn't see them. #Person1#: Well, can you help me look for it? That's my first time here. #Person2#: Sure. It's my pleasure. I'd like to help you look for the missing keys. #Person1#: It's very kind of you. #Person2#: It's not a big deal.Hey, I found them. #Person1#: Oh, thank God! I don't know how to thank you, guys. #Person2#: You're welcome."	"#Person1#'s looking for a set of keys and asks for #Person2#'s help to find them."

Example support-dialog summarization

Prompt (created from template)

Summarize the following conversation. Tommy: Hello. My name is Tommy Sandals, I have a reservation. Mike: May I see some identification, sir, please? Tommy: Sure. Here you go. Mike: Thank you so much. Have you got a credit card, Mr. Sandals? Tommy: I sure do. Mike: Thank you, sir. You'll be in room 507, nonsmoking, queen bed. Tommy: That's great, thank you! Mike: Enjoy your stay!

Source: https://huggingface.co/datasets/knkarthick/dialogsum/viewer/knkarthick--dialogsum/

DeepLearning.Al

Summary **before** fine-tuning FLAN-T5 with our dataset

Completion (Summary)

Tommy Sandals has a reservation for a room at the Venetian Hotel in Las Vegas.

Adequate completion, but does not match human baseline.

Human baseline summary: Tommy Sandals has got a reservation. Mike asks for his identification and credit card and helps his check-in.

Summary **before** fine-tuning FLAN-T5 with our dataset

Completion (Summary)

Tommy Sandals has a reservation for a room at the Venetian Hotel in Las Vegas.

Adequate completion, but does not match human baseline.

Human baseline summary: Tommy Sandals has got a reservation. Mike asks for his identification and credit card and helps his check-in.

Summary **before** fine-tuning FLAN-T5 with our dataset

Completion (Summary)

Tommy Sandals has a reservation for a room at the Venetian Hotel in Las Vegas.

Adequate completion, but does not match human baseline.

Human baseline summary: Tommy Sandals has got a reservation. Mike asks for his identification and credit card and helps his check-in.

Summary after fine-tuning FLAN-T5 with our dataset

Completion (Summary)

Tommy Sandals has a reservation and checks in showing his ID and credit card. Mike helps him to check in and approves his reservation.

> Better summary, more-closely matches human baseline.

Fine-tuning with your own data

Model evaluation metrics

LLM Evaluation - Challenges

Correct Predictions Accuracy = **Total Predictions**

LLM Evaluation - Challenges

"Mike adores sipping tea."

"Mike does drink coffee."

LLM Evaluation - Metrics

Used for text summarization
 Compares a summary to one
 Compore reference summaries
 trans

Used for text translation Compares to human-generated translations

LLM Evaluation - Metrics - Terminology

unigram

Reference (human):	ROUGE-1	unigram
It is cold outside.	Recall	unigrams i
Generated output: It is very cold outside.	ROUGE-1 Precision:	unigram

ROUGE-1	_	2	precisio
F1:	_	Ζ	precisio

$\frac{1}{n \text{ reference}} = \frac{4}{4} = 1.0$ in reference

 $\frac{1}{5} = \frac{4}{5} = 0.8$ s in output

 $\frac{\text{on x recall}}{\text{on + recall}} = 2 \frac{0.8}{1.8} = 0.89$

Reference (human):	ROUGE-1	unigram
It is cold outside.	Recall	unigrams i
Generated output: It is not cold outside.	ROUGE-1 Precision:	unigram

F1:

$\frac{1 \text{ matches}}{1 \text{ in reference}} = \frac{4}{4} = 1.0$

 $\frac{1 \text{ matches}}{1 \text{ s in output}} = \frac{4}{5} = 0.8$

ROUGE-1 = 2 $\frac{\text{precision x recall}}{\text{precision + recall}}$ = 2 $\frac{0.8}{1.8}$ = 0.89

Reference (human):

It is cold outside.

cold outside It is is cold

Generated output:

It is very cold outside.

It is

is very

very cold

cold outside

Reference (human): It is cold outside. It is is cold	ROUGE-2 Recall:	= -	bigram bigrams ir
cold outside Generated output: It is very cold outside.	ROUGE-2 Precision:	= -	bigram bigrams
It is is very very cold cold outside	ROUGE-2 F1:	= 2	precisio precisio

DeepLearning.Al

$\frac{\text{matches}}{\text{n reference}} = \frac{2}{3} = 0.67$

matches $-=\frac{2}{4}=0.5$ in output

 $\frac{90 \text{ x recall}}{90 \text{ + recall}} = 2 \frac{0.335}{1.17} = 0.57$

Reference (human):

It is cold outside.

Generated output:

It is very cold outside.

Longest common subsequence (LCS):

2

Reference (human):	ROUGE-L	LCS(Ge
It is cold outside.	Recall:	unigrams in
Generated output:	ROUGE-L	LCS(Ge
It is very cold outside.	Precision:	unigrams

F1:

 $\frac{\text{en, Ref}}{\text{n reference}} = \frac{2}{4} = 0.5$

 $\frac{\text{en, Ref}}{\text{s in output}} = \frac{2}{5} = 0.4$

ROUGE-L = 2 $\frac{\text{precision x recall}}{\text{precision + recall}}$ = 2 $\frac{0.2}{0.9}$ = 0.44

Reference (human):	ROUGE-L	=	LCS(Ge
It is cold outside.	Recall:		unigrams i
Generated output:	ROUGE-L	=	LCS(Ge
It is very cold outside.	Precision:		unigrams
LCS:	ROUGE-L	=	2 precisio
Longest common subsequence	F1:		precisio

 $\frac{1}{2}$ (in reference) = $\frac{2}{4}$ = 0.5

 $\frac{1}{100} = \frac{2}{5} = 0.4$

 $\frac{\text{precision x recall}}{\text{precision + recall}} = 2 \frac{0.2}{0.9} = 0.44$

LLM Evaluation - Metrics - ROUGE hacking

Reference (human):

It is cold outside.

Generated output: Cold cold cold cold

LLM Evaluation - Metrics - ROUGE clipping

Reference (human):	ROUGE-1	=	unigram
It is cold outside.	Precision		unigrams
Generated output:	Modified	=	clip(unigra
cold cold cold cold	precision		unigrams
Generated output:	Modified	=	clip(unigra
outside cold it is	precision		unigrams

$\frac{1}{s \text{ in output}} = \frac{1}{4} = 0.25$ s in output

 $\frac{4}{100} = \frac{4}{4} = 1.0$

LLM Evaluation - Metrics

Compares a summary to one or more reference summaries

Used for text translation Compares to human-generated translations

LLM Evaluation - Metrics - BLEU

BLEU metric = Avg(precision across range of n-gram sizes)

Reference (human):

I am very happy to say that I am drinking a warm cup of tea.

Generated output:

I am very happy that I am drinking a cup of tea. - BLEU 0.495

I am very happy that I am drinking a warm cup of tea. - BLEU 0.730

I am very happy to say that I am drinking a warm tea. - BLEU 0.798

I am very happy to say that I am drinking a warm cup of tea. - BLEU 1.000

DeepLearning.Al

LLM Evaluation - Metrics

Used for text summarization
 Compares a summary to one
 Compore reference summaries
 trans

Used for text translation Compares to human-generated translations

Benchmarks

DeepLearning.Al

Evaluation benchmarks

MMLU (Massive Multitask Language Understanding)

DeepLearning.Al

BIG-bench

GLUE

DeepLearning.Al

The tasks included in SuperGLUE benchmark:

Corpus	Train	Test	Task	Metrics	Domain
			Single-Se	entence Tasks	
CoLA	8.5k	1k	acceptability	Matthews corr.	misc.
SST-2	67k	1.8k	sentiment	acc.	movie reviews
			Similarity and	l Paraphrase Tasks	
MRPC	3.7k	1.7k	paraphrase	acc./F1	news
STS-B	7k	1.4k	sentence similarity	Pearson/Spearman corr.	misc.
QQP	364k	391k	paraphrase	acc./F1	social QA questions
			Infere	ence Tasks	
MNLI	393k	20k	NLI	matched acc./mismatched acc.	misc.
QNLI	105k	5.4k	QA/NLI	acc.	Wikipedia
RTE	2.5k	3k	NLI	acc.	news, Wikipedia
WNLI	634	146	coreference/NLI	acc.	fiction books

Source: Wang et al. 2018, "GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding"

SuperGLUE

The tasks included in SuperGLUE benchmark:

Corpus	Train	Dev	Test	Task	Metrics	Tex
BoolQ	9427	3270	3245	QA	acc.	Goo
CB	250	57	250	NLI	acc./F1	vari
COPA	400	100	500	QA	acc.	blog
MultiRC	5100	953	1800	QA	$F1_a/EM$	vari
ReCoRD	101k	10k	10k	QA	F1/EM	new
RTE	2500	278	300	NLI	acc.	new
WiC	6000	638	1400	WSD	acc.	Wor
WSC	554	104	146	coref.	acc.	ficti

Source: Wang et al. 2019, "SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems"

t Sources

ogle queries, Wikipedia ious gs, photography encyclopedia ious vs (CNN, Daily Mail) vs, Wikipedia rdNet, VerbNet, Wiktionary ion books

GLUE and SuperGLUE leaderboards

GLUE #	SuperGLUE	Ի Paper Code 🗮 Tasks 🏆 Leaderboard i FAQ 🏦 Diagnostics ᆀ Submit 🌖 Login									
	SuperGLUE 😭 GLUE										:
Rank Name											
1 Microsoft Alexande	Leaderboard Version: 2.0										
2 JDExplore d-team	Rank Name	Model	URL	Score	BoolQ CB	COPA MultiRC ReCoRD	RTE	WIC	wsc	AX-b	AX-g
4 DIRL Team	1 JDExplore d-team	Vega v2		91.3	90.5 98.6/99.2	99.4 88.2/62.4 94.4/93.9	96.0	77.4	98.6	-0.4	100.0/50.0
5 ERNIE Team - Bai	➡ 2 Liam Fedus	ST-MoE-32B		91.2	92.4 96.9/98.0	99.2 89.6/65.8 95.1/94.4	93.5	77.7	96.6	72.3	96.1/94.1
6 AliceMind & DIRL	3 Microsoft Alexander v-team	Turing NLR v5		90.9	92.0 95.9/97.6	98.2 88.4/63.0 96.4/95.9	94.1	77.1	97.3	67.8	93.3/95.5
7 DeBERTa Team - I	4 ERNIE Team - Baidu	ERNIE 3.0		90.6	91.0 98.6/99.2	97.4 88.6/63.2 94.7/94.2	92.6	77.4	97.3	68.6	92.7/94.7
8 HFL iFLYTEK	5 Yi Tay	PaLM 540B		90.4	91.9 94.4/96.0	99.0 88.7/63.6 94.2/93.3	94.1	77.4	95.9	72.9	95.5/90.4
10 T5 Team - Google	🛨 6 Zirui Wang	T5 + UDG, Single Model (Google Brain)		90.4	91.4 95.8/97.6	98.0 88.3/63.0 94.2/93.5	93.0	77.9	96.6	69.1	92.7/91.9
	7 DeBERTa Team - Microsoft	DeBERTa / TuringNLRv4		90.3	90.4 95.7/97.6	98.4 88.2/63.7 94.5/94.1	93.2	77.5	95.9	66.7	93.3/93.8

Disclaimer: metrics may not be up-to-date. Check <u>https://super.gluebenchmark.com</u> and <u>https://gluebenchmark.com/leaderboard</u> for the latest.

DeepLearning.Al

Benchmarks for massive models

2021

Source: Hendrycks, 2021. "Measuring Massive Multitask Language Understanding"

Benchmarks for massive models

2021

Source: Hendrycks, 2021. "Measuring Massive Multitask Language Understanding" Source: Suzgun et al. 2022. "Challenging BIG-Bench tasks and whether chain-of-thought can solve them"

2022

Holistic Evaluation of Language Models (HELM)

Metrics:

- 1. Accuracy
- 2. Calibration
- 3. Robustness
- 4. Fairness
- 5. Bias
- 6. Toxicity
- 1. Efficiency

Scenarios

	J1-J
NaturalQuestions (open)	
NaturalQuestions (closed)	
BoolQ	
NarrativeQA	
QuAC	
HellaSwag	
OpenBookQA	
TruthfulQA	
MMLU	
MS MARCO	
TREC	
XSUM	
CNN/DM	
IMDB	
CivilComments	
RAFT	

J1-Jumbo	J1-Grande	J1-Large	Anthropic- LM	BLOOM	Т0рр	Cohere XL	Cohere Large	Cohere Medium	Cohere Small	GPT- NeoX
		V	~	~	V	~	~	~	V	
~	V	V	V	~	~	V	V	V	V	
~	~	V	V	~	~	~	V	V	V	
V	V	~	~	V	~	V	V	V	V	
~	V	~	V	V	~	V	V	V	V	
~	V	~	V	V	~	V	V	V	V	
~	V	~	V	~	~	V	V	V	V	
~	~	~	V	~	V.	V	V	V	V	
~	~	V	v	~	~	~	V	V	V	
			V	V		V	V	V	V	
			~	~		V	V	V	V	
V	V	V	V	V	V	V	V	V	V	
V	V.	~	~	V	~	V	V	V	V	
V	V.	~	~	V	~	V	V	V	V	
V	~	V	~	V	~	V	V	V	V	
V	~	V	~	~	V	~	V	V	V	

DeepLearning.Al

Models

Holistic Evaluation of Language Models (HELM)

Center for Research on Foundation Models	HEL	M Mode	ls Scenar	ios Results R	law runs			v0.2.2	2 (last updated 20	23-03-19)
Core scena	rios									
The scenarios whe	re we evalu	late all the	models.							
[Accuracy Calibra	ation Robu	ustness Fa	irness Eff	iciency Genera	l information Bias To	oxicity Summarization	metrics	JSON]		
Accuracy										
Model/adapter	Mean win rate ↑ [sort]	MMLU - EM ↑ [sort]	BoolQ - EM ↑ [sort]	NarrativeQA - F1 ↑ [sort]	NaturalQuestions (closed-book) - F1 ↑ [sort]	NaturalQuestions (open-book) - F1 ↑ [sort]	QuAC - F1 ↑ [sort]	HellaSwag - EM ↑ [sort]	OpenbookQA - EM ↑ [sort]	TruthfulQA - EM ↑ [sort]
Cohere Command beta (52.4B)	0.93	0.452	0.856	0.752	0.372	0.76	0.432	0.811	0.582	0.269
text-davinci- 002	0.93	0.568	0.877	0.727	0.383	0.713	0.445	0.815	0.594	0.61
text-davinci-	0.898	0.569	0.881	0.727	0.406	0.77	0.525	0.822	0.646	0.593

Disclaimer: metrics may not be up-to-date. Check <u>https://crfm.stanford.edu/helm/latest</u> for the latest.

Key takeaways

LLM fine-tuning process

LLM fine-tuning

Training dataset

Prompt:

Classify this review: I loved this DVD!

Sentiment:

LLM completion:

Label:

Loss: Cross

LLM fine-tuning process

LLM fine-tuning

Training dataset

Prompt:

Classify this review: I loved this DVD!

Sentiment:

LLM fine-tuning process

LLM fine-tuning

DeepLearning.Al

LLM completion:

Classify this review: I loved this DVD!

Sentiment: Neutral

Label:

Classify this review: I loved this DVD!

Sentiment: Positive

Parameterefficient Fine-tuning (PEFT)

Full fine-tuning of large LLMs is challenging

Parameter efficient fine-tuning (PEFT)

Parameter efficient fine-tuning (PEFT)

New trainable layers

LLM with additional layers for PEFT

Less prone to catastrophic forgetting

Frozen Weights

Other components

Trainable weights

Full fine-tuning creates full copy of original LLM per task

PEFT Trade-offs

Parameter Efficiency

Memory Efficiency

Training Speed

Inference Costs

PEFT methods

Selective

Select subset of initial LLM parameters to fine-tune

Reparameterization

Reparameterize model weights using a low-rank representation

Source: Lialin et al. 2023, "Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning",

DeepLearning.Al

PEFT methods

Selective

Select subset of initial LLM parameters to fine-tune

Reparameterization

Reparameterize model weights using a low-rank representation

LoRA

Source: Lialin et al. 2023, "Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning",

Additive

Add trainable layers or parameters to model

Adapters

Soft Prompts
Prompt Tuning

Low-Rank Adaptation of Large Language Models (LoRA)

DeepLearning.Al

DeepLearning.Al

Feed forward network

Self-attention

DeepLearning.Al

Freeze most of the original LLM weights.

DeepLearning.Al

Freeze most of the original LLM weights. Inject 2 rank decomposition matrices Train the weights of the smaller matrices

DeepLearning.Al

Freeze most of the original LLM weights. Inject 2 **rank decomposition matrices** Train the weights of the smaller matrices

Steps to update model for inference1. Matrix multiply the low rank matrices

$$A = A \times B$$
original weights
$$A \times B$$

DeepLearning.Al

Freeze most of the original LLM weights. Inject 2 **rank decomposition matrices** Train the weights of the smaller matrices

Steps to update model for inference:1. Matrix multiply the low rank matrices

*
$$A = A \times B$$

original weights
 $\Rightarrow A \times B$

Concrete example using base Transformer as reference

Use the base Transformer model presented by Vaswani et al. 2017:

- Transformer weights have dimensions $d \ge k = 512 \ge 64$
- So 512 x 64 = 32,768 trainable parameters

In LoRA with rank r = 8:

- A has dimensions $r \ge k = 8 \ge 64 = 512$ parameters
- B has dimension $d \ge r = 512 \ge 8 = 4,096$ trainable parameters

DeepLearning.Al

- 86% reduction in parameters to train!

DeepLearning.Al

Train different rank decomposition matrices for different tasks

Update weights before inference

Sample ROUGE metrics for full vs. LoRA fine-tuning

Base model ROUGE Full fine-tune ROUGE

Dialog summarization

Sample ROUGE metrics for full vs. LoRA fine-tuning

DeepLearning.Al

Choosing the LoRA rank

Rank r	val_loss	BLEU	NIST	METEOR	ROUGE_L	CIDEr
1	1.23	68.72	8.7215	0.4565	0.7052	2.4329
2	1.21	69.17	8.7413	0.4590	0.7052	2.4639
4	1.18	70.38	8.8439	0.4689	0.7186	2.5349
8	1 17	69.57	8.7457	0.4636	0.7196	2.5196
16	1.16	69.61	8.7483	0.4629	0.7177	2.4985
32	1.16	69.33	8.7736	0.4642	0.7105	2.5255
64	1.16	69.24	8.7174	0.4651	0.7180	2.5070
128	1.16	68.73	8.6718	0.4628	0.7127	2.5030
256	1.16	68.92	8.6982	0.4629	0.7128	2.5012
512	1.16	68.78	8.6857	0.4637	0.7128	2.5025
1024	1.17	69.37	8.7495	0.4659	0.7149	2.5090
						0

Source: Hu et al. 2021, "LoRA: Low-Rank Adaptation of Large Language Models"

DeepLearning.Al

- Effectiveness of higher rank
- appears to plateau
- Relationship between rank
- and dataset size needs more
- empirical data

QLoRA: Quantized LoRA

- Introduces 4-bit NormalFloat (nf4) data type for 4-bit quantization
- Supports double-quantization to reduce memory ~0.4 bits per parameter (~3 GB for a 65B model)
- Unified GPU-CPU memory management reduces GPU memory usage
- LoRA adapters at every layer not just attention layers
- Minimizes accuracy trade-off

Optimizer State (32 bit)

Adapters (16 bit)

Base Model

Figure 1: Different finetuning methods and their memory requirements. QLORA improves over LoRA by quantizing the transformer model to 4-bit precision and using paged optimizers to handle memory spikes.

Source: Dettmers et al. 2023, "QLoRA: Efficient Finetuning of Quantized LLMs"

pe for 4-bit quantization emory ~0.4 bits per parameter

educes GPU memory usage ention layers

Prompt tuning with soft prompts

Prompt tuning is not prompt engineering!

One-shot or Few-shot Inference

Completion

Classify this review: I loved this DVD! Sentiment: Positive

Classify this review: I don't like this chair. Sentiment: Negative

Prompt tuning adds trainable "soft prompt" to inputs

Soft prompts

Embeddings of each token exist at unique point in multi-dimensional space

Soft prompts

Full Fine-tuning vs prompt tuning

Weights of model updated during training

Full Fine-tuning vs prompt tuning

Millions to Billions of	
parameter updated	

10K - 100K of parameters updated

Prompt tuning for multiple tasks

DeepLearning.Al

Performance of prompt tuning

Source: Lester et al. 2021, "The Power of Scale for Parameter-Efficient Prompt Tuning"

DeepLearning.Al

Full Fine-tuning Multi-task Fine-tuning Prompt tuning Prompt engineering

Prompt tuning can be as effective as full Fine-tuning for larger models!

Interpretability of soft prompts

DeepLearning.Al (\bigcirc)

Trained soft-prompt embedding does not correspond to a known token...

Interpretability of soft prompts

...but nearest neighbors form a semantic group with similar meanings.

PEFT methods summary

Selective

Select subset of initial LLM parameters to fine-tune

Reparameterization

Reparameterize model weights using a low-rank representation

LoRA

Additive

Add trainable layers or parameters to model

Adapters

Soft Prompts
Prompt Tuning

