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Generative AI

ChatBot

The street layout of 
Washington D.C. was 
designed by Pierre 
Charles L'Enfant, a 
French-born American 
architect and civil 
engineer.

Who designed the street 
layout of Washington DC?

T



Generative AI

What do you want to create?

pAIntBox

An imaginary subway map 
in a coastal city.

Generate

Image dimensions: (Max 2048)by



Generative AI

11

CodeAId
def binary_search(arr, x, l, r):_
   if r >= l:
        mid = l + (r - l) // 2
        if arr[mid] == x:
            return mid
        elif arr[mid] > x:
            return binary_search(arr, x, l, mid - 1)
        else:
            return binary_search(arr, x, mid + 1, r)
    else:
        return -1

1
2
3
4
5
6
7
8
9

 < 1/2 >  Accept Tab

AI Connected              Run security scan 
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Large Language Models

BERT

GPT

FLAN-T5

LLaMa
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Prompts and completions

Where is Ganymede 
located in the solar 
system? LLM

Where is Ganymede 
located in the solar 
system?

Ganymede is a moon of 
Jupiter and is located 
in the solar system 
within Jupiter’s 
orbit.

Prompt CompletionModel

Context window
● typically a few 1000 

words.



Prompts and completions



Use cases & tasks



LLM chatbot

ChatBot

Who designed the street 
layout of Washington DC?

T



LLM chatbot

ChatBot

The street layout of 
Washington D.C. was 
designed by Pierre 
Charles L'Enfant, a 
French-born American 
architect and civil 
engineer.

Who designed the street 
layout of Washington DC?

T



LLM use cases & tasks

SummarizationEssay Writing Translation



LLM use cases & tasks
Invoke APIs 
and actions

Action call

External 
Applications

SummarizationEssay Writing Translation Information 
retrieval



BERT*
110M

BLOOM
176B

*Bert-base

The significance of scale: language understanding

BLOOM
176B



How LLMs work - 
Transformers architecture



Generating text with RNNs

RNN



Generating text with RNNs

The milk is bad, my tea tastes great. ? … RNN



Generating text with RNNs

The milk is bad, my tea tastes great. ? … RNN



Generating text with RNNs

The milk is bad, my tea tastes great. ? … RNN



Generating text with RNNs

The milk is bad, my tea tastes great. ? RNN



Generating text with RNNs

The milk is bad, my tea tastes great. 

��
RNN



Understanding language can be challenging

I took my money to the bank.

River bank?



Understanding language can be challenging

The teacher taught the student with the book.

The teacher’s book?

The student’s book?



Transformers



Transformers

● Scale efficiently

● Parallel process

● Attention to input 
meaning



Transformers

RNN LLMLLM

L



Transformers

The teacher taught the student with the book.



Transformers

The teacher taught the student with the book.



Transformers

The teacher taught the student with the book.



Self-attention

The
teacher
taught
the
student
with
a
book
.

The
teacher

taught
the

student
with

a
book

.



Self-attention

The
teacher
taught
the
student
with
a
book
.

The
teacher

taught
the

student
with

a
book

.
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Transformers

the teacher taught the

342 879 432 342Tokenizer Token IDs

Input:
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Transformers

the teach er taught the

156 790 321 890 156

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

Tokenizer Token IDs

Input:
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Transformers

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

Embedding EmbeddingEmbedding

z

342 879 432 342

X1 X2 X3 X4

e.g. 512



Transformers
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Transformers

book

computer

internet

student
fox

fire

Angle measures distance 
between words



Transformers

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

Positional
Encoding

Positional
Encoding

X1 X2 X3 X4

X1 X2 X3 X4

+

Token 
embeddings

Position 
embeddings



Transformers

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

Self-attention Self-attention



EncoderEncoder

Transformers

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

Multi-headed 
Self-attention

Multi-headed 
Self-attention



Transformers

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

Feed forward 
network

Feed forward 
network



Transformers

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

P1 P2 … … … … … … … … … … … … … … … … … … … … … … … … … … … Pn

Softmax
output



Transformers
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Translation: 
sequence-to-sequence task

J'aime l'apprentissage 
automatique



Transformers

Translation: 
sequence-to-sequence task

J’aime
l'apprentissage

automatique

2345 3425 3853

J'aime l'apprentissage 
automatique
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Transformers
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Transformers

Translation: 
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Transformers

Translation: 
sequence-to-sequence task

J’aime
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Transformers

Translation: 
sequence-to-sequence task
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Transformers

Translation: 
sequence-to-sequence task

J’aime
l'apprentissage

automatique

2345 3425 3853

J'aime l'apprentissage 
automatique

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

297 450 901 389

I
love

machine
learning

I love machine 
learning 🎉



Transformers

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

Softmax 
output



Transformers

Encoder
Encodes inputs (“prompts”) 

with contextual understanding 

and produces one vector per 

input token.

Decoder 

Accepts input tokens and 

generates new tokens.
Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output



Transformers

Decoder

Input

Output

Decoder Only 
ModelsEncoder

Output

Input

Encoder Only 
Models Encoder

Decoder

Inputs

Output

Encoder Decoder 
Models



Prompting and 
prompt engineering



Prompting and prompt engineering

Where is Ganymede 
located in the solar 
system? LLM

Where is Ganymede 
located in the solar 
system?

Ganymede is a moon of 
Jupiter and is located 
in the solar system 
within Jupiter’s 
orbit.

Prompt CompletionModel

Context window: typically a 
few thousand words



In-context learning (ICL) - zero shot inference

Classify this review:
I loved this movie!
Sentiment: LLM

Prompt Model

Zero-shot inference

Classify this review:
I loved this movie!
Sentiment: Positive

Completion



In-context learning (ICL) - zero shot inference

Classify this review:
I loved this movie!
Sentiment:

LLM
Classify this review:
I loved this movie!
Sentiment: eived a 
very nice book review

Prompt CompletionModel



Classify this review:
I loved this movie!
Sentiment: Positive

Classify this review:
I don’t like this 
chair.
Sentiment:

In-context learning (ICL) - one shot inference

Prompt Model

LLM
Classify this review:
I loved this movie!
Sentiment: Positive

Classify this review:
I don’t like this 
chair.
Sentiment: Negative

Completion

One-shot inference



Classify this review:
I loved this DVD!
Sentiment: Positive

Classify this review:
I don’t like this 
chair.
Sentiment: Positive

Classify this review:
This is not great.
Sentiment: Negative

Classify this review:
I loved this DVD!
Sentiment: Positive

Classify this review:
I don’t like this 
chair.
Sentiment: Negative

Classify this review:
This is not great.
Sentiment:

In-context learning (ICL) - few shot inference

Prompt CompletionModel

LLM



Summary of in-context learning (ICL)

Classify this review:
I loved this movie!
Sentiment: 

Prompt // Zero Shot

Classify this review:
I loved this movie!
Sentiment: Positive

Classify this review:
I don’t like this 
chair.
Sentiment:

Prompt // One Shot

Classify this review:
I loved this movie!
Sentiment: Positive

Classify this review:
I don’t like this 
chair.
Sentiment: Negative

Classify this review:
Who would use this 
product?
Sentiment:

Prompt // Few Shot >5 or 6 examples

Context Window 
(few thousand words)
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Generative configuration
parameters for inference



Generative configuration - inference parameters 

Sample top K 25

Sample top P 1

Enter your prompt here…

Inference 
configuration 
parameters

Submit

Temperature 0.8

Max new tokens 200



Generative configuration - max new tokens 

Max new tokens

Sample top K 25

Sample top P 1

Enter your prompt here…

Submit

Temperature 0.8

Max new tokens 200



Generative config - max new tokens

E
ncoder

D
ecoder

E
m

bedding
E

m
bedding

S
oftm

ax
output

Inputs

max_new_tokens = 100

max_new_tokens = 150

max_new_tokens = 200



Generative config - max new tokens

E
ncoder

D
ecoder

E
m

bedding
E

m
bedding

S
oftm

ax
output

Inputs

max_new_tokens = 100

max_new_tokens = 200

max_new_tokens = 150

Stop token



E
ncoder

D
ecoder

E
m

bedding
E

m
bedding

S
oftm

ax
output

Inputs

cake

donut

banana

apple
…

0.20

0.10

0.02

0.01
…

Generative config - greedy vs. random sampling

greedy: The word/token with the highest 
probability is selected.

E
ncoder

D
ecoder

E
m

bedding
E

m
bedding

S
oftm

ax
output

Inputs

cake

donut

banana

apple
…

0.20

0.10

0.02

0.01
…

random(-weighted) sampling: select a token 
using a random-weighted strategy across 
the probabilities of all tokens.  

Here, there is a 20% chance that ‘cake’ will be 
selected, but ‘banana’ was actually selected.

Token 
probability

prob word



Generative configuration - top-k and top-p

Top-k and top-p sampling

Sample top K 25

Sample top P 1

Enter your prompt here…

Submit

Temperature 0.8

Max new tokens 200



E
ncoder

D
ecoder

E
m

bedding
E

m
bedding

S
oftm

ax
output

Inputs

cake

donut

banana

apple

…

0.20

0.10

0.02

0.01

…

Generative config - top-k sampling

top-k: select an output from the top-k 
results after applying random-weighted 
strategy using the probabilities

k=3

prob word



E
ncoder

D
ecoder

E
m

bedding
E

m
bedding

S
oftm

ax
output

Inputs

Generative config - top-p sampling

top-p: select an output using the 
random-weighted strategy with the 
top-ranked consecutive results by 
probability and with a cumulative 
probability <= p.

cake

donut

banana

apple

…

0.20

0.10

0.02

0.01

…
p = 0.30

wordprob



Temperature 

Generative configuration - temperature 

Sample top K 25

Sample top P 1

Enter your prompt here…

Submit

Temperature 0.8

Max new tokens 200



E
ncoder

D
ecoder

E
m

bedding
E

m
bedding

S
oftm

ax
output

Inputs

Generative config - temperature

Temperature 
setting

Strongly peaked 
probability 
distribution

Broader, flatter 
probability 
distribution

apple

banana

cake

donut

…

0.001

0.002

0.400

0.012

…

Cooler temperature (e.g <1)

apple

banana

cake

donut

…

0.040

0.080

0.150

0.120

…

Higher temperature (>1)

prob word prob word



Generative AI 
project lifecycle



Generative AI project lifecycle

Application integration

Optimize 
and deploy 
model for 
inference

Augment 
model and 
build LLM- 
powered 
applications

Adapt and align model 

Prompt 
engineering

Fine-tuning 

Align with 
human 
feedback

Evaluate
Define the 
use case

Scope

Choose an 
existing 
model or 
pretrain 
your own

Select



Generative AI project lifecycle

Application integration

Optimize 
and deploy 
model for 
inference

Augment 
model and 
build LLM- 
powered 
applications

Adapt and align model 

Prompt 
engineering

Fine-tuning 

Align with 
human 
feedback

Evaluate
Define the 
use case

Scope

Choose an 
existing 
model or 
pretrain 
your own

Select



Good at many tasks?
Invoke APIs 
and actions

Action call

External 
Applications

SummarizationEssay Writing Translation Information 
retrieval



Or good at a single task?
Invoke APIs 
and actions

Action call

External 
Applications

SummarizationEssay Writing Translation Information 
retrieval



Generative AI project lifecycle

Application integration

Optimize 
and deploy 
model for 
inference
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Generative AI project lifecycle

Application integration

Optimize 
and deploy 
model for 
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Augment 
model and 
build LLM- 
powered 
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Define the 
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Scope

Choose an 
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model or 
pretrain 
your own

Select Adapt and align model 
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Generative AI project lifecycle

Application integration

Optimize 
and deploy 
model for 
inference

Augment 
model and 
build LLM- 
powered 
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Define the 
use case

Scope

Choose an 
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model or 
pretrain 
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Generative AI project lifecycle

Adapt and align model 

Prompt 
engineering

Fine-tuning 

Align with 
human 
feedback

Evaluate

Choose an 
existing 
model or 
pretrain 
your own

Select

Define the 
use case

Scope Application integration

Optimize 
and deploy 
model for 
inference

Augment 
model and 
build LLM- 
powered 
applications



Pre-training and 
scaling laws



Generative AI project lifecycle

Define the 
use case

Adapt and align model Application integration

Choose an 
existing 
model or 
pretrain 
your own

Prompt 
engineering

Optimize 
and deploy 
model for 
inference

Augment 
model and 
build LLM- 
powered 
applications

Fine-tuning 

Align with 
human 
feedback

Evaluate

Scope Select



Generative AI project lifecycle

Define the 
use case

Adapt and align model Application integration

Choose an 
existing 
model or 
pretrain 
your own

Prompt 
engineering

Optimize 
and deploy 
model for 
inference

Augment 
model and 
build LLM- 
powered 
applications

Fine-tuning 

Align with 
human 
feedback

Evaluate

Scope Select



Considerations for choosing a model

Pretrained
LLM 

Custom
LLM 

Foundation model Train your own model



Considerations for choosing a model

Pretrained
LLM 

Custom
LLM 

Foundation model Train your own model



Model hubs



Model architectures and pre-training objectives



LLM pre-training at a high level

GB - TB - PB 
of unstructured data

LLM

Model

Token String Token 
ID

Embedding / 
Vector Representation

'_The' 37 [-0.0513, -0.0584, 
0.0230, ...]

'_teacher' 3145 [-0.0335,  0.0167,  
0.0484, ...]

'_teaches' 11749 [-0.0151, -0.0516,  
0.0309, ...]

'_the' 8 [-0.0498, -0.0428,  
0.0275, ...]

'_student' 1236 [-0.0460,  0.0031,  
0.0545, ...]

... ... ...

Vocabulary

TEXT[...]
TEXT[...]
TEXT[...]
TEXT[...]
TEXT[...]
TEXT[...]
TEXT[...]
TEXT[...]
TEXT[...]
TEXT[...]

D
ata Q

uality Filter

TEXT[...]

1-3% of 
original 
tokens



Transformers

Decoder

Input

Output

Decoder Only 
ModelsEncoder

Output

Input

Encoder Only 
Models Encoder

Decoder

Inputs

Output

Encoder Decoder 
Models



Autoencoding models

Encoder-only
LLM

Masked Language Modeling (MLM)

The teacher teaches the student

Objective: Reconstruct text ("denoising")

The teacher <MASK> the student
Bidirectional context

The teacher 
teaches the 
student. 

[...]

Original text
<MASK>

teaches



Good use cases:

● Sentiment analysis

● Named entity recognition

● Word classification

Autoencoding models

Example models:

● BERT

● ROBERTA



Autoregressive models

Decoder-only
LLM

Causal Language Modeling (CLM)

The teacher ?

Objective: Predict next token

The teacher teaches
Unidirectional context

The teacher 
teaches the 
student. 

[...]

Original text
The ?

The teacher



Good use cases:

● Text generation

● Other emergent behavior 
○ Depends on model size

Example models:

● GPT

● BLOOM

Autoregressive models



Sequence-to-sequence models

Encoder-Decoder
LLM

Span Corruption

The teacher <X> student

Objective: Reconstruct span

<x> teaches the

The teacher teaches the student

Sentinel token

The teacher 
teaches the 
student. 

[...]

Original text

<MASK><MASK>



Sequence-to-sequence models

Good use cases:

● Translation

● Text summarization

● Question answering

Example models:

● T5

● BART



Model architectures and pre-training objectives
Target

The teacher 
teaches the 
student 

[...]

Original text

MLM

LLM

Encoder-only

The teacher 
<MASK> the 
student

The teacher 
teaches the 
student

Autoencoding:

CLM

The teacher ? The teacher 
teaches

LLM

Decoder-only
Autoregressive:

The teacher 
<X> student

Span corruption

<X> teaches theLLM

Encoder-DecoderSeq-to-Seq:



BERT*
110M

BLOOM
176B

*Bert-base

The significance of scale: task ability

BLOOM
176B



Model size vs. time

2018

BERT-L
340M

GPT-2
1.5B GPT-3

175B PaLM
540B

20232022

Growth powered by:
● Introduction of 

transformer
● Access to massive 

datasets
● More powerful 

compute resources



Model size vs. time

2018

BERT-L
340M

GPT-2
1.5B GPT-3

175B PaLM
540B

increase?

20232022

Trillion(s)



Computational challenges



Approximate GPU RAM needed to store 1B parameters

Sources:  https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_one#anatomy-of-models-memory, https://github.com/facebookresearch/bitsandbytes

1 parameter = 4 bytes (32-bit float)

1B parameters = 4 x 109 bytes = 4GB

4GB @ 32-bit
full precision

https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_one#anatomy-of-models-memory
https://github.com/facebookresearch/bitsandbytes


Additional GPU RAM needed to train 1B parameters

Sources:  https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_one#anatomy-of-models-memory, https://github.com/facebookresearch/bitsandbytes

Bytes per parameter

Model Parameters (Weights) 4 bytes per parameter

Adam optimizer (2 states) +8 bytes per parameter

Gradients +4 bytes per parameter

Activations and 
temp memory (variable size)

+8 bytes per parameter (high-end estimate)

TOTAL =4 bytes per parameter
+20 extra bytes per parameter

~20 extra bytes 
per parameter 

https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_one#anatomy-of-models-memory
https://github.com/facebookresearch/bitsandbytes


Approximate GPU RAM needed to train 1B-params

Memory needed to store model

4GB @ 32-bit
full precision

80GB @ 32-bit
full precision

Memory needed to train  model



Quantization 

32-bit floating point

16-bit floating point | 8-bit integer 

0.0

0

MIN
~3e-38

MAX
~3e38

Range:
From ~3e-38  to  ~3e38

? ?

FP32

FP16 | BFLOAT16 | INT8  



Quantization: FP32

0.0

0

3.1415920257568359375

X
0        10000000        10010010000111111011000

Sign
1 bit

Exponent
8 bits

Fraction
23 bits

MIN
~3e-38

MAX
~3e38

Let's store Pi: 3.141592

Mantissa / Significand
= Precision

FP32

Real value of Pi:
3.1415926535897932384



Quantization: FP16

0.0

0MIN
-65504 

MAX
65504

3.140625

X

MIN
~3e-38

MAX
~3e38

3.1415920257568359375

X

Exponent
5 bits

Fraction
10 bits

Sign
1 bit

0        10000000        10010010000111111011000

Sign
1 bit

Exponent
8 bits

Fraction
23 bits

FP32

  0        10000                1001001000

FP16  

Let's store Pi: 3.141592

4 bytes memory

2 bytes memory



Quantization: BFLOAT16

0.0

0

BFLOAT16 | BF16 

  0        10000000        1001001

Sign
1 bit

Exponent
8 bits

Fraction
7 bits

MIN
~3e-38

MAX
~3e38

MIN
~3e-38

MAX
~3e38

3.140625

X

3.1415920257568359375

X
0        10000000        10010010000111111011000

Sign
1 bit

Exponent
8 bits

Fraction
23 bits

FP32

Let's store Pi: 3.141592

"Truncated FP32"

4 bytes memory

2 bytes memory



Quantization: INT8

0.0

0MIN
-128 

MAX
127

3

X

MIN
~3e-38

MAX
~3e38

INT8 

0                                        0000011

3.1415920257568359375

X

Fraction
7 bits

Sign
1 bit

0        10000000        10010010000111111011000

Sign
1 bit

Exponent
8 bits

Fraction
23 bits

FP32

Let's store Pi: 3.141592

4 bytes memory

1 byte memory



Quantization: Summary

Bits Exponent Fraction Memory needed 
to store one value

FP32 32 8 23 4 bytes

FP16 16 5 10 2 bytes

BFLOAT16 16 8 7 2 bytes

INT8 8 –/– 7 1 byte

● Reduce required memory to store and train models

● Projects original 32-bit floating point numbers into lower precision spaces

● Quantization-aware training (QAT) learns the quantization scaling factors during training

● BFLOAT16 is a popular choice

FLAN
T5



Approximate GPU RAM needed to store 1B parameters

Sources:  https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_one#anatomy-of-models-memory, https://github.com/facebookresearch/bitsandbytes

4GB @ 32-bit
full precision

Full-
precision

model

2GB @ 16-bit
half precision

16-bit
quantized 

model

1GB @ 8-bit
precision

8-bit
quantized 

model

https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_one#anatomy-of-models-memory
https://github.com/facebookresearch/bitsandbytes


Approximate GPU RAM needed to train 1B-params

Sources:  https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_one#anatomy-of-models-memory, https://github.com/facebookresearch/bitsandbytes

80GB is the maximum memory for the Nvidia A100 GPU, so to keep the
model on a single GPU, you need to use 16-bit or 8-bit quantization.

80GB @ 32-bit
full precision

40GB @ 16-bit
half precision 20GB @ 8-bit

precision

https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_one#anatomy-of-models-memory
https://github.com/facebookresearch/bitsandbytes


GPU RAM needed to train larger models

1B param 
model

14,000 GB @ 32-bit
full precision

40,000 GB @ 32-bit
full precision

175B param 
model

500B param 
model



GPU RAM needed to train larger models

1B param 
model

14,000 GB @ 32-bit
full precision

40,000 GB @ 32-bit
full precision

175B param 
model

500B param 
model

As model sizes get larger, you will 
need to split your model across 
multiple GPUs for training



Efficient Multi-GPU 
Compute Strategies



When to use distributed compute

LLM LLM

Model too big for single GPU Model fits on GPU, train data in 
parallel



Distributed Data Parallel (DDP)

Dataloader

GPU 0

GPU 1

GPU 2

GPU 3

LLM

LLM

LLM

LLM

Forward/ 
Backward pass

Forward/ 
Backward pass

Forward/ 
Backward pass

Forward/ 
Backward pass

Synchronize
gradients

Synchronize

Update
Model

Update
Model

Update
Model

Update
Model



Fully Sharded Data Parallel (FSDP)

● Motivated by the “ZeRO” paper - zero data overlap between GPUs

Sources:  
Rajbhandari et al. 2019: “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”
Zhao et al. 2023: “PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel”



Recap: Additional GPU RAM needed for training

Sources:  https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_one#anatomy-of-models-memory, https://github.com/facebookresearch/bitsandbytes

Bytes per parameter

Model Parameters (Weights) 4 bytes per parameter

Adam optimizer (2 states) +8 bytes per parameter

Gradients +4 bytes per parameter

Activations and 
temp memory (variable size)

+8 bytes per parameter (high-end estimate)

TOTAL =4 bytes per parameter
+20 extra bytes per parameter

https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_one#anatomy-of-models-memory
https://github.com/facebookresearch/bitsandbytes


Memory usage in DDP

● One full copy of model and training parameters on each GPU

Sources:  
Rajbhandari et al. 2019: “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”
Zhao et al. 2023: “PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel”



Zero Redundancy Optimizer (ZeRO)

● Reduces memory by distributing (sharding) the model parameters, 

gradients, and optimizer states across GPUs

Model “shard”: 
subset of parameters 
for each GPU

Sources:  
Rajbhandari et al. 2019: “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”
Zhao et al. 2023: “PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel”



Zero Redundancy Optimizer (ZeRO)

● Reduces memory by distributing (sharding) the model parameters, 

gradients, and optimizer states across GPUs

ZeRO Stage 1

ZeRO Stage 2

ZeRO Stage 3

Sources:  
Rajbhandari et al. 2019: “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”
Zhao et al. 2023: “PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel”



Distributed Data Parallel (DDP)

Forward/ 
Backward pass

Forward/ 
Backward pass

Forward/ 
Backward pass
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Backward pass

Synchronize
gradients
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Model
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Model
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Model
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Model

Dataloader

GPU 0

GPU 1

GPU 2

GPU 3

LLM

LLM

LLM

LLM
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Fully Sharded Data Parallel (FSDP)
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Fully Sharded Data Parallel (FSDP)

Forward
pass
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Fully Sharded Data Parallel (FSDP)

Forward
pass

Forward 
pass

Forward
pass

Forward
pass

Synchronize
gradients

Update
model

Update
model

Update
model

Update
model

Dataloader

GPU 0

GPU 1

GPU 2

GPU 3

Get 
weights

Backward 
pass

Backward 
pass

Backward 
pass

Backward
 pass

Get 
weights



Fully Sharded Data Parallel (FSDP)

● Helps to reduce overall GPU memory utilization

● Supports offloading to CPU if needed

● Configure level of sharding via sharding factor 

max. number of GPUs1 GPU

Full replication (no sharding)

max. number of GPUs1 GPU

Full sharding

max. number of GPUs1 GPU

Hybrid sharding



Impact of using FSDP

Zhao et al. 2023: “PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel”

Note: 1 teraFLOP/s = 1,000,000,000,000 
(one trillion) floating point operations per second



Scaling laws and compute-optimal models



Scaling choices for pre-training

Model 
performance
(minimize loss)

CONSTRAINT: 
Compute budget 

(GPUs, training time, cost) 

SCALING CHOICE: 
Dataset size 

(number of tokens)

SCALING CHOICE: 
Model size 

(number of parameters)

Goal: maximize model 
performance



Compute budget for training LLMs

1 “petaflop/s-day” = 
# floating point operations performed at rate of 1 petaFLOP per second for one day

NVIDIA V100s

1 petaflop/s-day  is these chips 
running at full efficiency for 24 hours 

Note: 1 petaFLOP/s = 1,000,000,000,000,000 
(one quadrillion) floating point operations per second



Compute budget for training LLMs

1 “petaflop/s-day” = 
# floating point operations performed at rate of 1 petaFLOP per second for one day

NVIDIA V100s

NVIDIA A100s

1 petaflop/s-day  is these chips 
running at full efficiency for 24 hours 

OR



Number of petaflop/s-days to pre-train various LLMs

Source: Brown et al. 2020, “Language Models are Few-Shot Learners”
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Compute budget vs. model performance

COMPUTE 
BUDGET 

DATASET 
SIZE

MODEL
SIZE

Source: Kaplan et al. 2020, “Scaling Laws for Neural Language Models” 



Dataset size and model size vs. performance

Source: Kaplan et al. 2020, “Scaling Laws for Neural Language Models” 

COMPUTE 
BUDGET 

DATASET 
SIZE

COMPUTE 
BUDGET 

DATASET 
SIZE

MODEL
SIZE

Compute resource constraints
● Hardware
● Project timeline
● Financial budget

❄



Dataset size and model size vs. performance

Source: Kaplan et al. 2020, “Scaling Laws for Neural Language Models” 

COMPUTE 
BUDGET 

DATASET 
SIZE

COMPUTE 
BUDGET 

DATASET 
SIZE

MODEL
SIZE

❄

❄

❄



Chinchilla paper

Jordan et al. 2022



● Very large models may be over-parameterized and under-trained

Compute optimal models

DATASET 
SIZE

COMPUTE 
BUDGET 

MODEL
SIZE

Fixed
COMPUTE 

BUDGET 

MODEL
SIZE

Fixed

Over-parameterized Under-trained

● Smaller models trained on more data could perform as well as large models

DATASET 
SIZE



Compute-optimal*
# of tokens (~20x)

~1.4T

~1.3T

~3.5T

~3.5T

~3.5T

Actual
# tokens

1.4T

1.4T

300B

180B

350B

Chinchilla scaling laws for model and dataset size 

Sources:  Hoffmann et al. 2022, “Training Compute-Optimal Large Language Models”
Touvron et al. 2023, “LLaMA: Open and Efficient Foundation Language Models”

# of parameters

70B

65B

175B

175B

176B

Model

Chinchilla

LLaMA-65B

GPT-3

OPT-175B

BLOOM

* assuming models are trained to be 
compute-optimal per Chinchilla paper

Compute optimal training datasize 
is ~20x number of parameters



Model size vs. time

2018

BERT-L
340M

GPT-2
1.5B GPT-3

175B PaLM
540B

increase?

20232022

Trillion(s)

BloombergGPT
50B

decrease?
LLaMa

65B



Pre-training for domain adaptation



Pre-training for domain adaptation

Legal language



Pre-training for domain adaptation

The prosecutor had difficulty 
proving mens rea, as the defendant 
seemed unaware that his actions 
were illegal.

The judge dismissed the case, 
citing the principle of res 
judicata as the issue had already 
been decided in a previous trial.

Despite the signed agreement, the 
contract was invalid as there was 
no consideration exchanged between 
the parties.

Legal language



Pre-training for domain adaptation

The prosecutor had difficulty 
proving mens rea, as the defendant 
seemed unaware that his actions 
were illegal.

The judge dismissed the case, 
citing the principle of res 
judicata as the issue had already 
been decided in a previous trial.

Despite the signed agreement, the 
contract was invalid as there was 
no consideration exchanged between 
the parties.

After a strenuous workout, the 
patient experienced severe myalgia 
that lasted for several days.

After the biopsy, the doctor 
confirmed that the tumor was 
malignant and recommended immediate 
treatment.

Sig: 1 tab po qid pc & hs

Take one tablet by mouth four times a day, 
after meals, and at bedtime.

Legal language Medical language



BloombergGPT: domain adaptation for finance

Financial
(Public & Private)

~51%

Other
(Public)~49%



BloombergGPT relative to other LLMs

Source: Wu et al. 2023, “BloombergGPT: A Large Language Model for Finance”



Key takeaways



LLM use cases & tasks
Invoke APIs 
and actions

Action call

External 
Applications

SummarizationEssay Writing Translation Information 
retrieval



Generative AI project lifecycle

Application integration

Optimize 
and deploy 
model for 
inference

Augment 
model and 
build LLM- 
powered 
applications

Adapt and align model 

Prompt 
engineering

Fine-tuning 

Align with 
human 
feedback

Evaluate
Define the 
use case

Scope

Choose an 
existing 
model or 
pretrain 
your own

Select


