
Copyright Notice
These slides are distributed under the Creative Commons License.

DeepLearning.AI makes these slides available for educational purposes. You may not use or
distribute these slides for commercial purposes. You may make copies of these slides and
use or distribute them for educational purposes as long as you cite DeepLearning.AI as the
source of the slides.

For the rest of the details of the license, see
https://creativecommons.org/licenses/by-sa/2.0/legalcode

http://deeplearning.ai/
http://deeplearning.ai/
https://creativecommons.org/licenses/by-sa/2.0/legalcode

Generative AI &
Large Language
Models (LLMs)

 USE CASES,
PROJECT LIFECYCLE, AND

MODEL PRE-TRAINING

Generative AI &
Large Language Model

Use Cases & Model
Lifecycle

Generative AI &
Large Language Models

Generative AI

ChatBot

The street layout of
Washington D.C. was
designed by Pierre
Charles L'Enfant, a
French-born American
architect and civil
engineer.

Who designed the street
layout of Washington DC?

T

Generative AI

What do you want to create?

pAIntBox

An imaginary subway map
in a coastal city.

Generate

Image dimensions: (Max 2048)by

Generative AI

11

CodeAId
def binary_search(arr, x, l, r):_
 if r >= l:
 mid = l + (r - l) // 2
 if arr[mid] == x:
 return mid
 elif arr[mid] > x:
 return binary_search(arr, x, l, mid - 1)
 else:
 return binary_search(arr, x, mid + 1, r)
 else:
 return -1

1
2
3
4
5
6
7
8
9

 < 1/2 > Accept Tab

AI Connected Run security scan

Large Language Models

BERT

GPT

FLAN-T5

LLaMa

PaLM

BLOOM

Large Language Models

BERT

GPT

FLAN-T5

LLaMa

PaLM

BLOOM

Prompts and completions

Where is Ganymede
located in the solar
system? LLM

Where is Ganymede
located in the solar
system?

Ganymede is a moon of
Jupiter and is located
in the solar system
within Jupiter’s
orbit.

Prompt CompletionModel

Context window
● typically a few 1000

words.

Prompts and completions

Use cases & tasks

LLM chatbot

ChatBot

Who designed the street
layout of Washington DC?

T

LLM chatbot

ChatBot

The street layout of
Washington D.C. was
designed by Pierre
Charles L'Enfant, a
French-born American
architect and civil
engineer.

Who designed the street
layout of Washington DC?

T

LLM use cases & tasks

SummarizationEssay Writing Translation

LLM use cases & tasks
Invoke APIs
and actions

Action call

External
Applications

SummarizationEssay Writing Translation Information
retrieval

BERT*
110M

BLOOM
176B

*Bert-base

The significance of scale: language understanding

BLOOM
176B

How LLMs work -
Transformers architecture

Generating text with RNNs

RNN

Generating text with RNNs

The milk is bad, my tea tastes great. ? … RNN

Generating text with RNNs

The milk is bad, my tea tastes great. ? … RNN

Generating text with RNNs

The milk is bad, my tea tastes great. ? … RNN

Generating text with RNNs

The milk is bad, my tea tastes great. ? RNN

Generating text with RNNs

The milk is bad, my tea tastes great.

��
RNN

Understanding language can be challenging

I took my money to the bank.

River bank?

Understanding language can be challenging

The teacher taught the student with the book.

The teacher’s book?

The student’s book?

Transformers

Transformers

● Scale efficiently

● Parallel process

● Attention to input
meaning

Transformers

RNN LLMLLM

L

Transformers

The teacher taught the student with the book.

Transformers

The teacher taught the student with the book.

Transformers

The teacher taught the student with the book.

Self-attention

The
teacher
taught
the
student
with
a
book
.

The
teacher

taught
the

student
with

a
book

.

Self-attention

The
teacher
taught
the
student
with
a
book
.

The
teacher

taught
the

student
with

a
book

.

Transformers

Transformers

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

Transformers

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

Transformers

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

Transformers

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

Transformers

the teacher taught the

342 879 432 342Tokenizer Token IDs

Input:

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

Transformers

the teach er taught the

156 790 321 890 156

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

Tokenizer Token IDs

Input:

Transformers

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

Embedding Embedding

Transformers

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

Embedding EmbeddingEmbedding

z

342 879 432 342

X1 X2 X3 X4

e.g. 512

Transformers

book

computer

internet

student
fox

fire

Transformers

book

computer

internet

student
fox

fire

Transformers

book

computer

internet

student
fox

fire

Angle measures distance
between words

Transformers

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

Positional
Encoding

Positional
Encoding

X1 X2 X3 X4

X1 X2 X3 X4

+

Token
embeddings

Position
embeddings

Transformers

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

Self-attention Self-attention

EncoderEncoder

Transformers

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

Multi-headed
Self-attention

Multi-headed
Self-attention

Transformers

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

Feed forward
network

Feed forward
network

Transformers

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

P1 P2 … Pn

Softmax
output

Transformers

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

Translation:
sequence-to-sequence task

J'aime l'apprentissage
automatique

Transformers

Translation:
sequence-to-sequence task

J’aime
l'apprentissage

automatique

2345 3425 3853

J'aime l'apprentissage
automatique

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

Transformers

Translation:
sequence-to-sequence task

J’aime
l'apprentissage

automatique

2345 3425 3853

J'aime l'apprentissage
automatique

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

Transformers

Translation:
sequence-to-sequence task

J’aime
l'apprentissage

automatique

2345 3425 3853

J'aime l'apprentissage
automatique

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

Transformers

Translation:
sequence-to-sequence task

J’aime
l'apprentissage

automatique

2345 3425 3853

J'aime l'apprentissage
automatique

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

Transformers

Translation:
sequence-to-sequence task

J’aime
l'apprentissage

automatique

2345 3425 3853

J'aime l'apprentissage
automatique

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

297

Transformers

Translation:
sequence-to-sequence task

J’aime
l'apprentissage

automatique

2345 3425 3853

J'aime l'apprentissage
automatique

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

297 450 901 389

Transformers

Translation:
sequence-to-sequence task

J’aime
l'apprentissage

automatique

2345 3425 3853

J'aime l'apprentissage
automatique

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

297 450 901 389

I
love

machine
learning

I love machine
learning 🎉

Transformers

Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

Softmax
output

Transformers

Encoder
Encodes inputs (“prompts”)

with contextual understanding

and produces one vector per

input token.

Decoder

Accepts input tokens and

generates new tokens.
Encoder

Decoder

Embedding Embedding

Softmax
output

Inputs

Output

Transformers

Decoder

Input

Output

Decoder Only
ModelsEncoder

Output

Input

Encoder Only
Models Encoder

Decoder

Inputs

Output

Encoder Decoder
Models

Prompting and
prompt engineering

Prompting and prompt engineering

Where is Ganymede
located in the solar
system? LLM

Where is Ganymede
located in the solar
system?

Ganymede is a moon of
Jupiter and is located
in the solar system
within Jupiter’s
orbit.

Prompt CompletionModel

Context window: typically a
few thousand words

In-context learning (ICL) - zero shot inference

Classify this review:
I loved this movie!
Sentiment: LLM

Prompt Model

Zero-shot inference

Classify this review:
I loved this movie!
Sentiment: Positive

Completion

In-context learning (ICL) - zero shot inference

Classify this review:
I loved this movie!
Sentiment:

LLM
Classify this review:
I loved this movie!
Sentiment: eived a
very nice book review

Prompt CompletionModel

Classify this review:
I loved this movie!
Sentiment: Positive

Classify this review:
I don’t like this
chair.
Sentiment:

In-context learning (ICL) - one shot inference

Prompt Model

LLM
Classify this review:
I loved this movie!
Sentiment: Positive

Classify this review:
I don’t like this
chair.
Sentiment: Negative

Completion

One-shot inference

Classify this review:
I loved this DVD!
Sentiment: Positive

Classify this review:
I don’t like this
chair.
Sentiment: Positive

Classify this review:
This is not great.
Sentiment: Negative

Classify this review:
I loved this DVD!
Sentiment: Positive

Classify this review:
I don’t like this
chair.
Sentiment: Negative

Classify this review:
This is not great.
Sentiment:

In-context learning (ICL) - few shot inference

Prompt CompletionModel

LLM

Summary of in-context learning (ICL)

Classify this review:
I loved this movie!
Sentiment:

Prompt // Zero Shot

Classify this review:
I loved this movie!
Sentiment: Positive

Classify this review:
I don’t like this
chair.
Sentiment:

Prompt // One Shot

Classify this review:
I loved this movie!
Sentiment: Positive

Classify this review:
I don’t like this
chair.
Sentiment: Negative

Classify this review:
Who would use this
product?
Sentiment:

Prompt // Few Shot >5 or 6 examples

Context Window
(few thousand words)

BERT*
110M

BLOOM
176B

*Bert-base

The significance of scale: task ability

BLOOM
176B

Generative configuration
parameters for inference

Generative configuration - inference parameters

Sample top K 25

Sample top P 1

Enter your prompt here…

Inference
configuration
parameters

Submit

Temperature 0.8

Max new tokens 200

Generative configuration - max new tokens

Max new tokens

Sample top K 25

Sample top P 1

Enter your prompt here…

Submit

Temperature 0.8

Max new tokens 200

Generative config - max new tokens

E
ncoder

D
ecoder

E
m

bedding
E

m
bedding

S
oftm

ax
output

Inputs

max_new_tokens = 100

max_new_tokens = 150

max_new_tokens = 200

Generative config - max new tokens

E
ncoder

D
ecoder

E
m

bedding
E

m
bedding

S
oftm

ax
output

Inputs

max_new_tokens = 100

max_new_tokens = 200

max_new_tokens = 150

Stop token

E
ncoder

D
ecoder

E
m

bedding
E

m
bedding

S
oftm

ax
output

Inputs

cake

donut

banana

apple
…

0.20

0.10

0.02

0.01
…

Generative config - greedy vs. random sampling

greedy: The word/token with the highest
probability is selected.

E
ncoder

D
ecoder

E
m

bedding
E

m
bedding

S
oftm

ax
output

Inputs

cake

donut

banana

apple
…

0.20

0.10

0.02

0.01
…

random(-weighted) sampling: select a token
using a random-weighted strategy across
the probabilities of all tokens.

Here, there is a 20% chance that ‘cake’ will be
selected, but ‘banana’ was actually selected.

Token
probability

prob word

Generative configuration - top-k and top-p

Top-k and top-p sampling

Sample top K 25

Sample top P 1

Enter your prompt here…

Submit

Temperature 0.8

Max new tokens 200

E
ncoder

D
ecoder

E
m

bedding
E

m
bedding

S
oftm

ax
output

Inputs

cake

donut

banana

apple

…

0.20

0.10

0.02

0.01

…

Generative config - top-k sampling

top-k: select an output from the top-k
results after applying random-weighted
strategy using the probabilities

k=3

prob word

E
ncoder

D
ecoder

E
m

bedding
E

m
bedding

S
oftm

ax
output

Inputs

Generative config - top-p sampling

top-p: select an output using the
random-weighted strategy with the
top-ranked consecutive results by
probability and with a cumulative
probability <= p.

cake

donut

banana

apple

…

0.20

0.10

0.02

0.01

…
p = 0.30

wordprob

Temperature

Generative configuration - temperature

Sample top K 25

Sample top P 1

Enter your prompt here…

Submit

Temperature 0.8

Max new tokens 200

E
ncoder

D
ecoder

E
m

bedding
E

m
bedding

S
oftm

ax
output

Inputs

Generative config - temperature

Temperature
setting

Strongly peaked
probability
distribution

Broader, flatter
probability
distribution

apple

banana

cake

donut

…

0.001

0.002

0.400

0.012

…

Cooler temperature (e.g <1)

apple

banana

cake

donut

…

0.040

0.080

0.150

0.120

…

Higher temperature (>1)

prob word prob word

Generative AI
project lifecycle

Generative AI project lifecycle

Application integration

Optimize
and deploy
model for
inference

Augment
model and
build LLM-
powered
applications

Adapt and align model

Prompt
engineering

Fine-tuning

Align with
human
feedback

Evaluate
Define the
use case

Scope

Choose an
existing
model or
pretrain
your own

Select

Generative AI project lifecycle

Application integration

Optimize
and deploy
model for
inference

Augment
model and
build LLM-
powered
applications

Adapt and align model

Prompt
engineering

Fine-tuning

Align with
human
feedback

Evaluate
Define the
use case

Scope

Choose an
existing
model or
pretrain
your own

Select

Good at many tasks?
Invoke APIs
and actions

Action call

External
Applications

SummarizationEssay Writing Translation Information
retrieval

Or good at a single task?
Invoke APIs
and actions

Action call

External
Applications

SummarizationEssay Writing Translation Information
retrieval

Generative AI project lifecycle

Application integration

Optimize
and deploy
model for
inference

Augment
model and
build LLM-
powered
applications

Adapt and align model

Prompt
engineering

Fine-tuning

Align with
human
feedback

Evaluate
Define the
use case

Scope

Choose an
existing
model or
pretrain
your own

Select

Generative AI project lifecycle

Application integration

Optimize
and deploy
model for
inference

Augment
model and
build LLM-
powered
applications

Define the
use case

Scope

Choose an
existing
model or
pretrain
your own

Select Adapt and align model

Prompt
engineering

Fine-tuning

Align with
human
feedback

Evaluate

Generative AI project lifecycle

Application integration

Optimize
and deploy
model for
inference

Augment
model and
build LLM-
powered
applications

Define the
use case

Scope

Choose an
existing
model or
pretrain
your own

Select Adapt and align model

Prompt
engineering

Fine-tuning

Align with
human
feedback

Evaluate

Generative AI project lifecycle

Adapt and align model

Prompt
engineering

Fine-tuning

Align with
human
feedback

Evaluate

Choose an
existing
model or
pretrain
your own

Select

Define the
use case

Scope Application integration

Optimize
and deploy
model for
inference

Augment
model and
build LLM-
powered
applications

Pre-training and
scaling laws

Generative AI project lifecycle

Define the
use case

Adapt and align model Application integration

Choose an
existing
model or
pretrain
your own

Prompt
engineering

Optimize
and deploy
model for
inference

Augment
model and
build LLM-
powered
applications

Fine-tuning

Align with
human
feedback

Evaluate

Scope Select

Generative AI project lifecycle

Define the
use case

Adapt and align model Application integration

Choose an
existing
model or
pretrain
your own

Prompt
engineering

Optimize
and deploy
model for
inference

Augment
model and
build LLM-
powered
applications

Fine-tuning

Align with
human
feedback

Evaluate

Scope Select

Considerations for choosing a model

Pretrained
LLM

Custom
LLM

Foundation model Train your own model

Considerations for choosing a model

Pretrained
LLM

Custom
LLM

Foundation model Train your own model

Model hubs

Model architectures and pre-training objectives

LLM pre-training at a high level

GB - TB - PB
of unstructured data

LLM

Model

Token String Token
ID

Embedding /
Vector Representation

'_The' 37 [-0.0513, -0.0584,
0.0230, ...]

'_teacher' 3145 [-0.0335, 0.0167,
0.0484, ...]

'_teaches' 11749 [-0.0151, -0.0516,
0.0309, ...]

'_the' 8 [-0.0498, -0.0428,
0.0275, ...]

'_student' 1236 [-0.0460, 0.0031,
0.0545, ...]

...

Vocabulary

TEXT[...]
TEXT[...]
TEXT[...]
TEXT[...]
TEXT[...]
TEXT[...]
TEXT[...]
TEXT[...]
TEXT[...]
TEXT[...]

D
ata Q

uality Filter

TEXT[...]

1-3% of
original
tokens

Transformers

Decoder

Input

Output

Decoder Only
ModelsEncoder

Output

Input

Encoder Only
Models Encoder

Decoder

Inputs

Output

Encoder Decoder
Models

Autoencoding models

Encoder-only
LLM

Masked Language Modeling (MLM)

The teacher teaches the student

Objective: Reconstruct text ("denoising")

The teacher <MASK> the student
Bidirectional context

The teacher
teaches the
student.

[...]

Original text
<MASK>

teaches

Good use cases:

● Sentiment analysis

● Named entity recognition

● Word classification

Autoencoding models

Example models:

● BERT

● ROBERTA

Autoregressive models

Decoder-only
LLM

Causal Language Modeling (CLM)

The teacher ?

Objective: Predict next token

The teacher teaches
Unidirectional context

The teacher
teaches the
student.

[...]

Original text
The ?

The teacher

Good use cases:

● Text generation

● Other emergent behavior
○ Depends on model size

Example models:

● GPT

● BLOOM

Autoregressive models

Sequence-to-sequence models

Encoder-Decoder
LLM

Span Corruption

The teacher <X> student

Objective: Reconstruct span

<x> teaches the

The teacher teaches the student

Sentinel token

The teacher
teaches the
student.

[...]

Original text

<MASK><MASK>

Sequence-to-sequence models

Good use cases:

● Translation

● Text summarization

● Question answering

Example models:

● T5

● BART

Model architectures and pre-training objectives
Target

The teacher
teaches the
student

[...]

Original text

MLM

LLM

Encoder-only

The teacher
<MASK> the
student

The teacher
teaches the
student

Autoencoding:

CLM

The teacher ? The teacher
teaches

LLM

Decoder-only
Autoregressive:

The teacher
<X> student

Span corruption

<X> teaches theLLM

Encoder-DecoderSeq-to-Seq:

BERT*
110M

BLOOM
176B

*Bert-base

The significance of scale: task ability

BLOOM
176B

Model size vs. time

2018

BERT-L
340M

GPT-2
1.5B GPT-3

175B PaLM
540B

20232022

Growth powered by:
● Introduction of

transformer
● Access to massive

datasets
● More powerful

compute resources

Model size vs. time

2018

BERT-L
340M

GPT-2
1.5B GPT-3

175B PaLM
540B

increase?

20232022

Trillion(s)

Computational challenges

Approximate GPU RAM needed to store 1B parameters

Sources: https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_one#anatomy-of-models-memory, https://github.com/facebookresearch/bitsandbytes

1 parameter = 4 bytes (32-bit float)

1B parameters = 4 x 109 bytes = 4GB

4GB @ 32-bit
full precision

https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_one#anatomy-of-models-memory
https://github.com/facebookresearch/bitsandbytes

Additional GPU RAM needed to train 1B parameters

Sources: https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_one#anatomy-of-models-memory, https://github.com/facebookresearch/bitsandbytes

Bytes per parameter

Model Parameters (Weights) 4 bytes per parameter

Adam optimizer (2 states) +8 bytes per parameter

Gradients +4 bytes per parameter

Activations and
temp memory (variable size)

+8 bytes per parameter (high-end estimate)

TOTAL =4 bytes per parameter
+20 extra bytes per parameter

~20 extra bytes
per parameter

https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_one#anatomy-of-models-memory
https://github.com/facebookresearch/bitsandbytes

Approximate GPU RAM needed to train 1B-params

Memory needed to store model

4GB @ 32-bit
full precision

80GB @ 32-bit
full precision

Memory needed to train model

Quantization

32-bit floating point

16-bit floating point | 8-bit integer

0.0

0

MIN
~3e-38

MAX
~3e38

Range:
From ~3e-38 to ~3e38

? ?

FP32

FP16 | BFLOAT16 | INT8

Quantization: FP32

0.0

0

3.1415920257568359375

X
0 10000000 10010010000111111011000

Sign
1 bit

Exponent
8 bits

Fraction
23 bits

MIN
~3e-38

MAX
~3e38

Let's store Pi: 3.141592

Mantissa / Significand
= Precision

FP32

Real value of Pi:
3.1415926535897932384

Quantization: FP16

0.0

0MIN
-65504

MAX
65504

3.140625

X

MIN
~3e-38

MAX
~3e38

3.1415920257568359375

X

Exponent
5 bits

Fraction
10 bits

Sign
1 bit

0 10000000 10010010000111111011000

Sign
1 bit

Exponent
8 bits

Fraction
23 bits

FP32

 0 10000 1001001000

FP16

Let's store Pi: 3.141592

4 bytes memory

2 bytes memory

Quantization: BFLOAT16

0.0

0

BFLOAT16 | BF16

 0 10000000 1001001

Sign
1 bit

Exponent
8 bits

Fraction
7 bits

MIN
~3e-38

MAX
~3e38

MIN
~3e-38

MAX
~3e38

3.140625

X

3.1415920257568359375

X
0 10000000 10010010000111111011000

Sign
1 bit

Exponent
8 bits

Fraction
23 bits

FP32

Let's store Pi: 3.141592

"Truncated FP32"

4 bytes memory

2 bytes memory

Quantization: INT8

0.0

0MIN
-128

MAX
127

3

X

MIN
~3e-38

MAX
~3e38

INT8

0 0000011

3.1415920257568359375

X

Fraction
7 bits

Sign
1 bit

0 10000000 10010010000111111011000

Sign
1 bit

Exponent
8 bits

Fraction
23 bits

FP32

Let's store Pi: 3.141592

4 bytes memory

1 byte memory

Quantization: Summary

Bits Exponent Fraction Memory needed
to store one value

FP32 32 8 23 4 bytes

FP16 16 5 10 2 bytes

BFLOAT16 16 8 7 2 bytes

INT8 8 –/– 7 1 byte

● Reduce required memory to store and train models

● Projects original 32-bit floating point numbers into lower precision spaces

● Quantization-aware training (QAT) learns the quantization scaling factors during training

● BFLOAT16 is a popular choice

FLAN
T5

Approximate GPU RAM needed to store 1B parameters

Sources: https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_one#anatomy-of-models-memory, https://github.com/facebookresearch/bitsandbytes

4GB @ 32-bit
full precision

Full-
precision

model

2GB @ 16-bit
half precision

16-bit
quantized

model

1GB @ 8-bit
precision

8-bit
quantized

model

https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_one#anatomy-of-models-memory
https://github.com/facebookresearch/bitsandbytes

Approximate GPU RAM needed to train 1B-params

Sources: https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_one#anatomy-of-models-memory, https://github.com/facebookresearch/bitsandbytes

80GB is the maximum memory for the Nvidia A100 GPU, so to keep the
model on a single GPU, you need to use 16-bit or 8-bit quantization.

80GB @ 32-bit
full precision

40GB @ 16-bit
half precision 20GB @ 8-bit

precision

https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_one#anatomy-of-models-memory
https://github.com/facebookresearch/bitsandbytes

GPU RAM needed to train larger models

1B param
model

14,000 GB @ 32-bit
full precision

40,000 GB @ 32-bit
full precision

175B param
model

500B param
model

GPU RAM needed to train larger models

1B param
model

14,000 GB @ 32-bit
full precision

40,000 GB @ 32-bit
full precision

175B param
model

500B param
model

As model sizes get larger, you will
need to split your model across
multiple GPUs for training

Efficient Multi-GPU
Compute Strategies

When to use distributed compute

LLM LLM

Model too big for single GPU Model fits on GPU, train data in
parallel

Distributed Data Parallel (DDP)

Dataloader

GPU 0

GPU 1

GPU 2

GPU 3

LLM

LLM

LLM

LLM

Forward/
Backward pass

Forward/
Backward pass

Forward/
Backward pass

Forward/
Backward pass

Synchronize
gradients

Synchronize

Update
Model

Update
Model

Update
Model

Update
Model

Fully Sharded Data Parallel (FSDP)

● Motivated by the “ZeRO” paper - zero data overlap between GPUs

Sources:
Rajbhandari et al. 2019: “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”
Zhao et al. 2023: “PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel”

Recap: Additional GPU RAM needed for training

Sources: https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_one#anatomy-of-models-memory, https://github.com/facebookresearch/bitsandbytes

Bytes per parameter

Model Parameters (Weights) 4 bytes per parameter

Adam optimizer (2 states) +8 bytes per parameter

Gradients +4 bytes per parameter

Activations and
temp memory (variable size)

+8 bytes per parameter (high-end estimate)

TOTAL =4 bytes per parameter
+20 extra bytes per parameter

https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_one#anatomy-of-models-memory
https://github.com/facebookresearch/bitsandbytes

Memory usage in DDP

● One full copy of model and training parameters on each GPU

Sources:
Rajbhandari et al. 2019: “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”
Zhao et al. 2023: “PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel”

Zero Redundancy Optimizer (ZeRO)

● Reduces memory by distributing (sharding) the model parameters,

gradients, and optimizer states across GPUs

Model “shard”:
subset of parameters
for each GPU

Sources:
Rajbhandari et al. 2019: “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”
Zhao et al. 2023: “PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel”

Zero Redundancy Optimizer (ZeRO)

● Reduces memory by distributing (sharding) the model parameters,

gradients, and optimizer states across GPUs

ZeRO Stage 1

ZeRO Stage 2

ZeRO Stage 3

Sources:
Rajbhandari et al. 2019: “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”
Zhao et al. 2023: “PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel”

Distributed Data Parallel (DDP)

Forward/
Backward pass

Forward/
Backward pass

Forward/
Backward pass

Forward/
Backward pass

Synchronize
gradients

Update
Model

Update
Model

Update
Model

Update
Model

Dataloader

GPU 0

GPU 1

GPU 2

GPU 3

LLM

LLM

LLM

LLM

Distributed Data Parallel (DDP)

Forward/
Backward pass

Forward/
Backward pass

Forward/
Backward pass

Forward/
Backward pass

Synchronize
gradients

Update
Model

Update
Model

Update
Model

Update
Model

Dataloader

GPU 0

GPU 1

GPU 2

GPU 3

Fully Sharded Data Parallel (FSDP)

Forward/
Backward pass

Forward/
Backward pass

Forward/
Backward pass

Forward/
Backward pass

Synchronize
gradients

Update
Model

Update
Model

Update
Model

Update
Model

Dataloader

GPU 0

GPU 1

GPU 2

GPU 3

Fully Sharded Data Parallel (FSDP)

Forward/
Backward pass

Forward/
Backward pass

Forward/
Backward pass

Forward/
Backward pass

Synchronize
gradients

Update
Model

Update
Model

Update
Model

Update
Model

Dataloader

GPU 0

GPU 1

GPU 2

GPU 3

Fully Sharded Data Parallel (FSDP)

Forward
pass

Forward
pass

Forward
pass

Forward
pass

Synchronize
gradients

Update
model

Update
model

Update
model

Update
model

Dataloader

GPU 0

GPU 1

GPU 2

GPU 3

Get
weights

Backward
pass

Backward
pass

Backward
pass

Backward
 pass

Get
weights

Fully Sharded Data Parallel (FSDP)

Forward
pass

Forward
pass

Forward
pass

Forward
pass

Synchronize
gradients

Update
model

Update
model

Update
model

Update
model

Dataloader

GPU 0

GPU 1

GPU 2

GPU 3

Get
weights

Backward
pass

Backward
pass

Backward
pass

Backward
 pass

Get
weights

Fully Sharded Data Parallel (FSDP)

● Helps to reduce overall GPU memory utilization

● Supports offloading to CPU if needed

● Configure level of sharding via sharding factor

max. number of GPUs1 GPU

Full replication (no sharding)

max. number of GPUs1 GPU

Full sharding

max. number of GPUs1 GPU

Hybrid sharding

Impact of using FSDP

Zhao et al. 2023: “PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel”

Note: 1 teraFLOP/s = 1,000,000,000,000
(one trillion) floating point operations per second

Scaling laws and compute-optimal models

Scaling choices for pre-training

Model
performance
(minimize loss)

CONSTRAINT:
Compute budget

(GPUs, training time, cost)

SCALING CHOICE:
Dataset size

(number of tokens)

SCALING CHOICE:
Model size

(number of parameters)

Goal: maximize model
performance

Compute budget for training LLMs

1 “petaflop/s-day” =
floating point operations performed at rate of 1 petaFLOP per second for one day

NVIDIA V100s

1 petaflop/s-day is these chips
running at full efficiency for 24 hours

Note: 1 petaFLOP/s = 1,000,000,000,000,000
(one quadrillion) floating point operations per second

Compute budget for training LLMs

1 “petaflop/s-day” =
floating point operations performed at rate of 1 petaFLOP per second for one day

NVIDIA V100s

NVIDIA A100s

1 petaflop/s-day is these chips
running at full efficiency for 24 hours

OR

Number of petaflop/s-days to pre-train various LLMs

Source: Brown et al. 2020, “Language Models are Few-Shot Learners”

T5 GPT-3BERT/
ROBERTA

Tr
ai

n
in

g
P

et
afl

o
p

/s
-d

ay
s

10000

1000

100

10

1

Base
Larg

e
Ro-B

ase
Ro-L

arg
e

Sm
all

Base
Larg

e
3B

11B
Sm

all
M

ediu
m

Larg
e XL

2.7
B

6.7
B

13B
175B

Compute budget vs. model performance

COMPUTE
BUDGET

DATASET
SIZE

MODEL
SIZE

Source: Kaplan et al. 2020, “Scaling Laws for Neural Language Models”

Dataset size and model size vs. performance

Source: Kaplan et al. 2020, “Scaling Laws for Neural Language Models”

COMPUTE
BUDGET

DATASET
SIZE

COMPUTE
BUDGET

DATASET
SIZE

MODEL
SIZE

Compute resource constraints
● Hardware
● Project timeline
● Financial budget

❄

Dataset size and model size vs. performance

Source: Kaplan et al. 2020, “Scaling Laws for Neural Language Models”

COMPUTE
BUDGET

DATASET
SIZE

COMPUTE
BUDGET

DATASET
SIZE

MODEL
SIZE

❄

❄

❄

Chinchilla paper

Jordan et al. 2022

● Very large models may be over-parameterized and under-trained

Compute optimal models

DATASET
SIZE

COMPUTE
BUDGET

MODEL
SIZE

Fixed
COMPUTE

BUDGET

MODEL
SIZE

Fixed

Over-parameterized Under-trained

● Smaller models trained on more data could perform as well as large models

DATASET
SIZE

Compute-optimal*
of tokens (~20x)

~1.4T

~1.3T

~3.5T

~3.5T

~3.5T

Actual
tokens

1.4T

1.4T

300B

180B

350B

Chinchilla scaling laws for model and dataset size

Sources: Hoffmann et al. 2022, “Training Compute-Optimal Large Language Models”
Touvron et al. 2023, “LLaMA: Open and Efficient Foundation Language Models”

of parameters

70B

65B

175B

175B

176B

Model

Chinchilla

LLaMA-65B

GPT-3

OPT-175B

BLOOM

* assuming models are trained to be
compute-optimal per Chinchilla paper

Compute optimal training datasize
is ~20x number of parameters

Model size vs. time

2018

BERT-L
340M

GPT-2
1.5B GPT-3

175B PaLM
540B

increase?

20232022

Trillion(s)

BloombergGPT
50B

decrease?
LLaMa

65B

Pre-training for domain adaptation

Pre-training for domain adaptation

Legal language

Pre-training for domain adaptation

The prosecutor had difficulty
proving mens rea, as the defendant
seemed unaware that his actions
were illegal.

The judge dismissed the case,
citing the principle of res
judicata as the issue had already
been decided in a previous trial.

Despite the signed agreement, the
contract was invalid as there was
no consideration exchanged between
the parties.

Legal language

Pre-training for domain adaptation

The prosecutor had difficulty
proving mens rea, as the defendant
seemed unaware that his actions
were illegal.

The judge dismissed the case,
citing the principle of res
judicata as the issue had already
been decided in a previous trial.

Despite the signed agreement, the
contract was invalid as there was
no consideration exchanged between
the parties.

After a strenuous workout, the
patient experienced severe myalgia
that lasted for several days.

After the biopsy, the doctor
confirmed that the tumor was
malignant and recommended immediate
treatment.

Sig: 1 tab po qid pc & hs

Take one tablet by mouth four times a day,
after meals, and at bedtime.

Legal language Medical language

BloombergGPT: domain adaptation for finance

Financial
(Public & Private)

~51%

Other
(Public)~49%

BloombergGPT relative to other LLMs

Source: Wu et al. 2023, “BloombergGPT: A Large Language Model for Finance”

Key takeaways

LLM use cases & tasks
Invoke APIs
and actions

Action call

External
Applications

SummarizationEssay Writing Translation Information
retrieval

Generative AI project lifecycle

Application integration

Optimize
and deploy
model for
inference

Augment
model and
build LLM-
powered
applications

Adapt and align model

Prompt
engineering

Fine-tuning

Align with
human
feedback

Evaluate
Define the
use case

Scope

Choose an
existing
model or
pretrain
your own

Select

